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. STRUCTURAL AND FUNCTIONAL ROLES
OF UNSATURATED FATTY ACIDS IN THE BRAIN.
EFFECTS OF AGEING .

Role des acides gras poly-insaturés sur la structure
et la fonction du cerveau. Effet du vieillissement

JEAN-MARIE BOURRE"

Résumé : Parmi tous les organes, et pour ce qui
touche spécifiquement le cerveau, ce sont les acides
gras M3 qui ont été particulierement. Le déficit en
acide alpha-linolénique (18 : 3 M3) altére la structure
et la fonction des membranes, et entraine de légers
dysfonctionnements cérébraux, comme cela a été
montré sur les modeles animaux puis chez les nour-
rissons humains. Les résultats récents ont montré que
son déficit alimentaire induit des anomalies plus mar-
quées dans certaines structures cérébrales que dans
d’autres, le cortex frontal et I’hypophyse étant les plus
touchés. Ces singularités sont accompagnées de per-
turbations comportementales qui touchent plus parti-
culitrement certains tests (habituation, adaptation a
une situation nouvelle). Les anomalies biochimiques et
comportementales sont partiellement réversées par une
supplémentation avec des phospholipides, notamment
extraits d’ceuf enrichis en M3 ou de cervelle de porc.
Une étude effet-dose montre que les phospholipides
d’origine animale sont plus efficaces que ceux d’origine
végétale pour réverser les conséquences du déficit, dans
la mesure, entre autres, ol ils apportent les trés
longues chaines pré-formées. La carence en acide
alpha-linolénique diminue la perception du plaisir, en
altérant légerement P'efficacité des organes sensoriels
et en affectant certaines structures cérébrales. Au
cours du vieillissement, la baisse de Vaudition, de la
vue et de l’odorat résultent tout autant de la dimi-
nution de Defficacité des parties concernées du cerveau
que des perturbations des récepteurs sensoriels, en
particulier de Poreille intermne ou de la rétine. Un
niveau de perception donné du gofit du sucré exige,
par exemple, une quantité de sucre plus grande chez
ceux qui sont déficients en cet acide gras. Compte tenu
des habitudes alimentaires des populations occiden-
tales, le déficit en 6 n’étant pas efcore observé, son
impact sur le cerveau n’a pas été étudié. En revanche,
une carence en acides gras M9, spécifiquement en acide
oléique, induit une réduction de cet acide dans nombre
de tissus, excepté le cerveau (mais le nerf sciatique est
touché). Ainsi, cet acide ne serait pas synthétisé en
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quantité suffisante, au moins pendant la période de
gestation-lactation, impliquant une obligation d’apport
alimentaire. 11 convient de rappeler que la mise en
place des neurones est pratiquement terminée quelques
semaines avant la naissance, et que ceux-ci resteront
toute la vie durant. De ce fait, une perturbation dans
celle-ci, une altération de leurs connectivités, et un
mauvais renouvellement de leurs composants a n’im-
porte quel stade de la vie, ne pourront gu’accélérer
le vieillissement. Les activités enzymatiques de syn-
thése des acides gras poly-insaturés a longues chaines
carbonées a partir des acides linoléique et alpha-lino-
lénique sont trés faibles dans le cerveau: cet organe
dépend donc d’un approvisionnement exogene. De ce
fait, les acides gras essentiels pour le cerveau sont les
acides arachidonique et cervonique, qui proviennent
de I’alimentation, & moins qu’ils ne soient synthétisés
par le foie A partir des acides linoléique et alpha-lino-
lénique. De ce fait la diminution des activités de désa-
turases hépatiques au cours du vieillissement (qui par-
ticipent a la synthése des longues chaines, avec les
élongases) peuvent induire des altérations du renou-
vellement des membranes du cerveau, Or, dans de
nombreuses structures, dont surtout le cortex frontal,
une diminution des acides cervonique et arachidonique
est observée au cours du vieillissement, associée pré-
férentiellement a une réduction des phosphatidyl-
éthanol-amines (principalement sous leur forme de
plasmalogénes). Les activités d’oxydations peroxyso-
males des acides gras poly-insaturés diminuent dans
le cerveau au cours du vieillissement, participant au
moindre renouvellement des acides gras membra-
naires, qui sont par ailleurs moins bien protégés contre
les per-oxydations radicalaires.

Abstract : Among various organs, in the brain, the
fatty acids most extensively studied are @3 fatty acids.
Alpha-linolenic acid (18: 3(®3) deficiency alters the
structure and function of membranes and induces
minor cerebral dysfunctions, as demonstrated in
animal models and subsequently in human infants.
Recent results have shown that dietary alpha-linolenic
acid deficiency induces more marked abnormalities in
certain cerebral structures than in others, as the
frontal cortex and pituitary gland are more severely
affected. These selective lesions are accompanied by
behavioural disorders more particularly affecting
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certain tests (habituation, adaptation to new situa-
tions). Biochemical and behavioural abnormalities are
partially reversed by a dietary phospholipid sup-
plement, especially 03-rich egg yolk extracts or pig
brain. A dose-effect study showed that animal phos-
pholipids are more effective than plant phespholipids

.to reverse the consequences of alpha-linolenic acid defi-

ciency, partly because they provide very long pre-
formed chains. Alpha-linolenic acid deficiency
decreases the perception of pleasure, by slightly
altering the efficacy of sensory organs and by affecting
certain cerebral structures. Age-related impairment of
hearing, vision and smell is due to both decreased
efficacy of the parts of the brain concerned and
disorders of sensory receptors, particularly of the inner
ear or retina. For example, a given level of perception
of a sweet taste requires a larger quantity of sugar in
subjects with alpha-linolenic acid deficiency. In view
of occidental eating habits, as (06 fatty acid deficiency
has never been observed, its impact on the brain has
not been studied. In contrast. ()9 fatty acid deficiency,
specifically oleic acid deficiency, induces a reduction
of this fatty acid in many tissues, except the brain
(but the sciatic nerve is alfected). This fatty acid is
therefore not synthesized in sufficient quantities, at
least during pregnancy-lactation, implying a need for
dietary intake. It must be remembered that organi-
zation of the neurons is almost complete several weeks
before birth, and that these neurons remain for the
subject’s life time. Consequently, any disturbance of
these neurons, an alteration of their connections, and
impaired turnover of their constituents at any stage
of life, will tend to accelerate ageing. The enzymatic
activities of synthesis of long-chain polyunsaturated
fatty acids from linoleic and alpha-linolenic acids are
very limited in the brain : this organ therefore depends
on an exogenous supply. Consequently, fatty acids that
are essential for the brain are arachidonic acid and
cervonic acid, derived from the diet, unless they are
synthesized by the liver from linoleic acid and alpha-
linolenic acid. The age-related reduction of hepatic
desaturase activities (which participate in the synthesis
of long chains, together with elongases) can impair
turnover of cerebral membranes. In many structures,
especially in the frontal cortex, a reduction of cervonic
and arachidonic acids is observed during ageing, pre-
dominantly associated with a reduction of phosphati-
dylethanolamines (mainly in the form of plasma-
logens). Peroxisomal oxidation of polyunsaturated fatty
acids decreases in the brain during ageing, partici-
pating in decreased turnover of membrane fatty acids,
which are also less effectively protected against per-
oxidation by free radicals.

Figure 1. Nomenclature of the main fatty acids.

\AAAAA  COOH Laurfcacid 12:0
VAAAAAA  COOH Myristic acld 14:0
AAAAAAA  COOH Palmitic acid 16:0
AAAAAAA  COOH Stearic acid 18:0
AAAASIAAA,  COOH Oleic acid 18:1 (n-9)
Ao s Ay COOH Linolsic acld 18:2 (n-6)
AN AN COOH Alpha-linolenic acid 18:3 (n-3)
Aneomemen,,  COOH  Arachidonic acid 20:4 (n-6)
\eacn e mmen,  COOH EPA 20:5 (n-39)
= e~ COOH  DHA, cervonic acid  22:6 (n-3)
AAMAAAAAAAA COOH Lignoceric acid 240
SAAASBAAAAAAY COOH Nervonic acid 24:1 (n-9)
AAAMAAAAAAAA  COOH Cerebronic acid 24h:0
MH COOH Phytanic acid
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Introduction

The brain is composed of three main types of
cells : neurons, astrocytes and oligodendrocytes. Other
cells also have important roles, such as endothelial
cells of cerebral capillaries. Neurons account for only
about 1/4 of the weight of the brain. Nervous tissue
has the highest lipid concentration, immediately after
adipose tissue. These fatty acids, almost all structural
and not energetic, participate directly in the archi-
tecture and therefore in the functioning of cerebral
cell membranes, including those which ensure
compartmentalization of the cell and individualization
of its organelles. Life is strictly impossible in the
absence of the two essential fatty acids because cell
membranes can no longer be formed or maintained.
At one time, these essential fatty acids were called
“vitamin F”’. The cell membrane — composed of large
quantities of phospholipids — ensures the individuality
of cells and acts as a support for a large number of
specific physiological activities. The fatty acid compo-
sition of a phospholipid 1s specific to the membrane
(and cell) 1o which it belongs.

Fatty acids can be classified into two cate-
gories : non-essential fatty acids that are synthesized
by all organs, including the brain (saturated or mono-
unsaturated, possibly alpha-hydroxylated fatty acids),
and essential fatty acids that must be provided in the
diet. In fact, cerebral membranes are not composed
of the dietary precursors, linoleic acid and alpha-
linolenic acid, but their longer chain and more unsa-
turated derivatives.

An average of one in three fatty acids in the
nervous system 1s polyunsaturated. Position 2 of phos-
pholipids is generally occupied by a polyunsaturated
fatty acid, which is usually 20: 4w6 (arachidonic
acid), 22: 4w6 (adrenic acid), 22: 5w3 and espe-
cially 22 : 63 (DHA, cervonic acid). Polyunsaturated
fatty acids of the w3 series have very special roles in
cell membranes, especially in the nervous system : all
brain cells and organelles contain high levels of these
fatty acids, but they are not present in sufficient quan-
tities in modern French diets.

The importance of dietary w3 polyunsaturated
fatty acids is well known, as these compounds decrease
the incidence of cardiovascular disease and constitute
precursors of biologically active derivatives. However,
their structural role in membranes, including cerebral
membranes, is also qualitatively and quantitatively
very important. Among other roles, fatty acids control
the composition of membranes and therefore their
fluidity and consequently their enzymatic activities,
binding between molecules and receptors, cellular
interactions, and nutrient transport.

In fact, the first studies demonstrating the rela-
tionship between the effect of a nutrient and the
structure and function of the brain were based on
alpha-linolenic acid. A first discovery in 1984 demons-
trated that alpha-linolenic acid deficiency induces
abnormalities of the composition of the various cell
types and organelles of the nervous system : neurons,
astrocytes, oligodendrocytes, myelin, nerve endings,
endoplasmic reticulum (1). These subjects present a
very marked cervonic acid deficiency, which is
generally compensated by an excess 22: 5w6 (fatty
acids described by Galli (2). The total quantity of
polyunsaturated fatty acids is therefore relatively
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normal ; saturated and monounsaturated fatty acids are
virtually not affected. Dietary alpha-linolenic acid is
preserved in nervous tissues (and its very-long-chain
derivatives are reutilized), as a 21-fold decrease in
dietary intake results, at worst, in only a 5-fold
decrease in alpha-linolenic acid levels in the various
organs examined, and only a twofold decrease in
neurons.

It was subsequently demonstrated, in 1989, in
a study ‘of the biochemistry, physicochemistry, toxi-
cology, electrophysiology and behaviour in the same
series of animals, that these fatty acids can control
certain electrophysiological parameters, and certain
higher functions (learning). A reduction of these fatty
acids induces an alteration of membrane functioning
(enzyme, receptor, transporter activities), and an
increased susceptibility of these membranes to
aggression. A dose-effect relationship has been
demonstrated between the quantity of dietary alpha-
linolenic acid and the DHA content of cerebral struc-
tures (3), in young as well as adult animals (4). The
rate of recovery after correction of the deficiency is
very slow (5, 6), including in the cerebral microcir-
culation (7). These results have been confirmed many
times on many different models (8, 9). Brainfood have
been documented in some books (10, 11).

Simultaneous linoleic acid and alpha-linolenic
acid deficiency is obviously incompatible with life, as
it alters the fatty acid composition of all organs,
including the brain (2). In the course of evolution, the
dietary acquisition of DHA largely contributed to the
development of the human brain (12).

Studies can only be conducted on animal
models, as it is obviously impossible to study the
effects of nutrients on the human brain. Animal studies
provide certain leads that can sometimes be partially
validated in man, but they usually only provide confir-
mation.

This review will analyse most of the studies
concerning unsaturated fatty acids and ageing.
However, after a brief reminder of the general rela-
tionships between fatty acids of the three families and
the brain, this review will only present recent data,
i.e. studies conducted since 2000 until the end of
January 2003. Only results concerning mammals will
be presented, while data derived from birds (particu-
larly hens, eggs, and possibly the chicks derived from
these eggs) were not taken into account. Schemati-
cally, the very great majority of the published results
concern 3 fatty acids, and only a very small minority
of studies are strictly devoted to w6 fatty acids; when

Figure 2. Anabolism of long-chain polyunsaturated fatty
acids from precursors, essential fatty acids (linoleic
acid and alpha-linolenic acid).
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w6 fatty acids are mentioned, it is only in reference
to w3 fatty acids. Several interesting studies have been
published on w6 fatty acids, particularly oleic acid.

Nomenclature

Fats are mainly composed of molecules called
triglycerides, in turn composed of fatty acids. The type
of fatty acid determines the nutritional characteristics
of each type of fat. “Saturated” fats are predominantly
composed of saturated fatty acids; monounsaturated
fats are predominantly composed of monounsaturated
fatty acids (mainly oleic acid) and polyunsaturated fats
contain useful quantities of polyunsaturated fatty acids.
Two polyunsaturated fatty acids are essential, i.e.
mammals, and therefore man, are unable to synthesize
them or even transform them from one to the other.
These fatty acids must therefore be supplied in the
diet. Before identification of their chemical structure,
they were grouped under the term “vitamin F’. These
essential fatty acids are called linoleic acid and alpha-
linolenic acid, and each one constitutes the head of
two families of fatty acids called w6 (omega-6) and
w3 (omega-3) or (n-6) and (n-3) according to chemical
nomenclature. Chemically, it would be more accurate
to speak of polyethylene chains rather than polyun-
saturated chains. The head of the w3 family is
therefore alpha-linolenic acid. Its derivatives are timno-
donic acid- (alias eicosapentaenoic acid (EPA), 22:
5w3), which participates in the pharmacological effect
of fish oil in the context of prevention and treatment
of cardiovascular disease, and cervonic acid (alias
docosahexaenoic acid (DHA), 22 : 6w3), as the brain
is the living structure, which contains the greatest
quantities of this fatty acid, which explains why it
was discovered in this organ. The frontal brain, specific
to man, is the region of the brain with the highest
levels of DHA. All fatty acids in the w3 family share
a common characteristic : the first unsaturated bond,
corresponding to a double chemical bond, is always
situated on the 3rd carbon from the metabolically non-
reactive methyl end of the chain. This facilitates
description, as it is unnecessary to decline all of the
names of all fatty acids of the family, presenting
double bonds at different points along the carbon chain
when counting from the biochemically reactive
carboxyl end (according to chemical nomenclature)
that undergoes various modifications.

Omega-3 fatty acids

Analysis of the fatty acid composition of total
phospholipids of 11 regions of the murine brain shows
that the level of 22 : 6w3, under normal conditions,
is significantly higher in the frontal cortex. Alpha-
linolenic acid deficiency does not affect all cerebral
structures to the same degree: the pituitary gland,
frontal cortex and corpus striatum are the structures
most severely affected, with an approximate 40 %
reduction of 22 : 6w3. An egg yolk or pig brain phos-
pholipid supplement can restore a normal fatty acid
composition in all regions of the brain, except for the
frontal cortex. There is therefore a regional distribution
of fatty acids in the brain and the impact of a fatty
acid deficiency is consequently “region-specific” (13).

Under conditions of deficiency, w3 fatty acids
are preserved and reutilized by recycling mediated by
deacylation and reacylation reactions, which is
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decreased by only 30% to 70 %, while transfer
between the blood and the brain is reduced 40-fold
(14), which explains the 50 % DHA deficiency initially
observed in neurons (1).

Alpha-linolenic acid deficiency induces a
reduction of DHA in the hippocampus, associated with
a feduction of the size, but not the number of neurons
(15), and a specific reduction of w3 fatty acids asso-
ciated with a reduction of a particular phospholipid,
phosphatidylserine (16). In elderly rats, administration
of fish oil increases the transcription of transthyretin
in this structure (17) and decreases NGF (“nerve
growth factor”) (Ikemoto et al., 2000). Inhibition of
production of the second messenger controlled by
protein-kinase constitutes a target for w3 fatty acids,
at least in vitro (18).

Possibilities of biochemical and behavioural
recovery

The dietary use 3 alone is unsatisfactory. as
a diet enriched in fish oil enhances alertness and acqui-
sition of learning in young mice. but decreases motor
activity and learning in elderly mice (19).

Exploratory activity is significantly reduced in
w3 deficient mice. On the elevated plus-maze (a test
which measures anxiety), the time spent in the open
arms of the apparatus was significantly lower in
w3 deficient mice than in controls. The use of the
learning protocol on the maze showed that w3 defi-
ciency impaired learning. A phospholipid supplement
(in this case eggs enriched with w3, but also containing
w6) reversed the biochemical and behavioural altera-
tions induced by w3 polyunsaturated fatty acid defi-
ciency in mice, as exploratory activity and learning
were totally restored after egg or pig brain phospho-
lipid supplementation, while the level of anxiety was
not restored to the same level as that of the controls.
Recovery was therefore incomplete (20).

There is a time lag between incorporation of
fatty acids in the brain and improvement of learning
performances (21). Note that egg extracts enriched in
3 and w6 have been used for several years to prepare
special milk formulas and that pig brain phospholipids
have been used in small-for-dates infants (22).

A DHA-rich phospholipid supplement improves
behaviour, learning and visual function in control
elderly mice and mice with w3 polyunsaturated fatty
acid deficiency (23). Pure DHA (in the form of ethyl
ester) provides similar results (24).

An intra-amniotic injection in 3 fatty acid
deficient animals corrects w3 fatty acid deficiency of
the foetal brain in 24 hours (25).

Overall, in man, ®3 fa{ty acids could reduce
cognitive decline and the risk of dementia (26). In
various types of dementia, including the Alzheimer
type, low plasma levels of w3 fatty acids (including
in DHA) constitute a risk factor for these diseases
(27). Abnormal phospholipid turnover has been
described in schizophrenia (28); specific treatment
with EPA would be useful in schizophrenia (29), and
also in depression (30). In another field, neurologi-
cally disabled children absorb insufficient quantities
of w3 fatty acids, as reflected by the presence of serum
markers of w3 deficiency, 20: 3w9 and 22: 56,
which interferes with effective renewal of their already
damaged cerebral structures (31).
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Dose-effects : triglycerides or phospholipids?

Alpha-linolenic acid is probably elongated and
desaturated by the liver into longer chains that actually
constitute the essential fatty acids for the brain, as
initially discovered in nerve cell cultures, which only
differentiate, multiply, bind and release neurotrans-
mitters when the culture medium contains 20:
406 and 22: 6w3; but not in the presence of 18:
2w6 and 18: 3w3 (32). A recent dose-effect study
showed that egg or pig brain phospholipids are better
sources of polyunsaturated fatty acids than soybean
phospholipids, 4s' they directly provide long-chain
polyunsaturated fatty acids (33). Similar results have
been observed with w6 fatty acids (34).

Neurotransmission, signalling, transport

Alpha-linolenic acid deficiency results in
disorders of monoaminergic neurotransmission in the
rat frontal cortex. that could be linked to the observed
behavioural and cognitive deficits. There is obviously
a relationship between polyunsaturated tatty acids,
neurotransmission and behaviour (35, 36). but neither
the density nor the function of dopanmiine transporters
are affected (37). In alpha-linolenic acid deficient
animals, the disorder of dopaminergic neurotrans-
mission (in the prefrontal cortex, among others) is
only partially reversed after correction of the dietary
deficiency (38).

A PET study in conscious monkeys showed that
modulation of cholinergic neurotransmission by DHA
not only involves cerebral structures, but also cerebral
blood flow (39).

In terms of signalling, intracellular and inter-
cellular relationships may be affected by w3 fatty acid
deficiency, which decreases accumulation of phospha-
tidylserine that can induce modifications of signal
contents (40).

A very important finding is that 3 fatty acid
deficiency can modify the energy metabolism of the
brain by altering glucose transport (41).

Electrophysiological studies show that alpha-
linolenic acid deficiency induces electroencephalo-
graphic changes (36).

Sense organs : vision, hearing, smell and taste

Vision is dependent on the nature of dietary
fatty acids. The retina, part of the central nervous
system, is one of the tissues with the highest levels
of ®3 polyunsaturated fatty acids. w3 fatty acid defi-
ciency induces modifications of the distribution of
membrane fatty acids of the retina associated with
alterations of the amplitude of “a” and “b” waves on
the electroretinogram (3).

In »3 fatty acid deficient mice, phospholipid
supplementation induces a significant increase in the
amplitude of the “b” wave in both controls and
deficient mice. It also restores a normal fatty acid
composition of the retina (23). In fact, DHA plays an
important role in vision, involving the retina and brain :
photoreceptors, neurotransmission, activation of
rhodopsin, development of cones and rods, neuronal
synapses and maturation of cerebral structures (42).

As many behavioural tests directly or indirectly
depend on vision, it is fundamental to observe that
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learning deficits in alpha-linolenic acid deficient mice
are not due to visual impairment (43).

The concentrations of DHA-rich phospholipids
in the retina decrease during ageing (44).

Similar results have been reported for smell :
alteration of tests assessing the sense of smell is not
due to a reduction of olfactory function per se, but
to an alteration of cerebral structures (45).

For the first time, it has been shown that «3 fatty
acid deficiency alters hearing, particularly the cerebral
response to auditory stimuli. It also induces premature
or more accelerated ageing of the auditory nervous
system. Fatty acids affect the efficacy of sensory
receptors, but also cerebral receptor structures (46).
Phosphatidylcholine (lecithin) could preserve mito-
chondrial function of the cochlea, and consequently
protect against age-related hearing loss (47).

w3 fatty acid deficiency alters taste. For
example, a given level of perception of a sweet taste
requires a larger quantity of sugar in animals with
alpha-linolenic acid deficiency (48).

Omega-6 fatty acids

Specific linoleic acid deficiency does not appear
to occur in man, as, fortunately, apart from excep-
tional cases of artificial diet lasting several months, it
would be difficult not to absorb linoleic acid, as this
fatty acid is present in variable quantities in the
majority of foods. Selective, serious linoleic acid defi-
ciency has therefore never been observed in man, but
perhaps because sufficiently detailed investigations
have not been conducted.

Almost all of the studies listed in the references
did not deal directly with w6 fatty acids, but with
their relationships with 3 fatty acids. Only the
minimum dietary requirements have been determined
in animals (49). The effect of an increase of linoleic
acid on tissue concentration of cevonic acid and conse-
quentely on alpha-linolenic requirement have been
documented (50). In baboons. 22: 46 is mainly
formed trom arachidonic acid (20 : 46). A reduction
of the arachidonic acid content is observed during
ageing, related to glutamate receptors (51).

_ Recovery after w3 fatty acid deficiency is only
possible if w6 fatty acids do not induce excessive
competition (52).

®6 and w3 fatty acids modulate neurotrans-
mitter metabolism, at least in piglets (53) and, in rats,
they participate in the hippocampus receptor density,
which could account for the effects of these fatty acids
on memory (54). Competition between w3 and
w6 fatty acids does not concern recycling, but elon-
gation and desaturation reactions (55).

In mice, maternal exposure to a diet very rich
in w6 fatty acids during pregnancy induces increased
alcohol consumption in females of the litter (56), in
line with observations showing that alcohol interferes
with the fatty acids of nerve endings (57).

Consumption of foods with a well defined w3 :

w6 ratio is effective against various components of
stress (58).
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Omega-9 fatty acids: oleic acid

The nutritional value of oleic acid in the context
of a balanced diet has been the subject of a number
of studies, with particular emphasis on the cardiovas-
cular system. However, very recent research has
demonstrated that this fatty acid is also important for
the brain (59). In the brain, w9 fatty acids consist of
oleic acid, but also very large quantities of longer-
chain derivatives, mainly 24 : 1, especially in the
myelin sheath.

Commercial vegetable oils cannot be used to
precisely determine the effect of the presence and the
concentration of oleic acid in the diet on the fatty acid
composition of various organs, as they always contain
oleic acid. Sufficiently large quantities of triglycerides
to be compatible with nutritional investigations were
therefore synthesized chemically and enzymatically;
they were composed of either oleic acid, alpha-linolenic
acid, or linoleic acid. Globally, in rats, dietary oleic
acid deficiency leads to a reduction of the oleic acid
concentration in many organs, including the sciatic
nerve, but not in the brain. In many organs, endogenous
synthesis therefore does not compensate for the absence
of oleic acid in food (60). This fatty acid is therefore
partially essential, especially during pregnancy and
lactation, at least in rats.

The absence of modifications of the 18:
19 concentration of cerebral structures according to
the oleic acid content of the diet raises several hypo-
theses. Either the nervous system selectively binds
oleic acid, suggesting the possibility of specific, active
transport mechanisms across the blood-brain barrier,
or it is able to synthesize all of the oleic acid that it
needs, independently of its presence in the diet (59),
as a stearyl desaturase has been demonstrated to be
active in the brain (61). In mice presenting signs of
accelerated ageing, a reduction of this delta-9-desa-
turase is detected in the hippocampus, which could
account for the observed behavioural disturbances (62).

Free fatty acids (including oleic acid) were
assayed in the cerebrospinal fluid of a large series of
patients (63). An oleic acid derivative, oleamide,
modulates sleep (64) and reduces apoptosis of cere-
bellar neurons (65).

Ageing and fatty acid composition

A reduction of arachidonic acid incorporation
in the brain and a reduction of its turnover are observed
during ageing (66). :

A recent study examined the composition of
the human cortex between the ages of 2 years and
88 years (67). Globally, DHA and monounsaturated
fatty acid concentrations increase up until the age of
18 years. During ageing, the levels of polyunsaturated
fatty acids, especially arachidonic acid, decrease, while
the level of alpha-linolenic acid increases. The poly-
unsaturated fatty acid content of phosphatidylethano-
lamine is markedly decreased in Alzheimer’s
disease (68).

The rat cortex and hippocampus present major
changes in their polyunsaturated fatty acid compo-
sition, especially affecting the DHA content of phos-
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phatidylethanolamine plasmalogens (69), associated
with an alteration of their participation in membrane
structures resulting in a reduction of cognitive perfor-
mances, their participation in neurotransmission and
also their antioxidant role during ageing (70).

. Globally, during ageing, a reduction of the 20 :
4w6, 22 : 46 and 22 : 6w3 concentration is observed
in the cortex and cerebellum, associated with an
increase in the 18 : 1w9 and 20 : 1w9 concentrations,
mainly in phosphatidylethanolamines and phosphati-
dylserines (71, 72). These defects can be corrected by
an appropriate diet (73, 74). A modification of the
exchanges of choline and serine bases is also observed
during ageing (75). The microsomal synthesis of phos-
phatidylethanolamines and phosphatidylserines 1is
decreased during ageing (76). Another important
finding is that phosphatidylserine decarboxylase
decreases during ageing, reducing the production of
phosphatidylethanolamine (77).

In the hippocampus of ageing rats, dietary
alpha-linolenic acid deficiency induces a selective
reduction of phosphatidylserine associated with
increased MAO-B activity, but has no effect on the
serotonin and noradrenaline contents (78).

An increase in the concentration of pro-inflam-
matory cytokine (interleukin-1-beta) is observed in the
brain during ageing (79), which may be responsible
for a certain degree of deterioration of certain cellular
functions, especially as binding of interleukin-1 to its
receptor inhibits the release of glutamate in hippo-
campal nerve endings of young rats, but not in ageing
rats (80).

The reduction of cerebral glucose levels induces
modifications of cerebral metabolism, resulting in
peroxidation in ageing rats (81).

Turnover of phospholipids (especially phospha-
tidylcholine and phosphatidylethanolamine) and
cholesterol in synaptic membranes is decreased during
ageing (82). The lipid composition of mitochondria
present in synapses is also affected, especially their
linoleic acid content (83).

The increased cholesterol content of cerebral
membranes induces an increased physical rigidity of
these membranes, inducing functional disturbances;
membrane fluidity can be restored by a carefully
defined polyunsaturated fatty acid supplement (58);
the optimal ratio between w6 fatty acids and w3 fatty
acids is 5: 1.

Ageing and desaturase attivities

The essential fatty acids for the brain are arachi-
donic acid and cervonic acid, which are either provided
in the diet or are synthesized by the liver from linoleic
acid and alpha-linolenic acid. Consequently, the effects
of ageing on desaturases (which, together with
elongases, participate in the synthesis of long-chain
fatty acids) can alter the turnover of cerebral
membranes. Changes in hepatic desaturase activities
during ageing vary according to the species : they are
slightly modified (84, 85) or remain unchanged (86)
in rats, and are decreased by one half in mice (87).
This reduction is not observed in alpha-linolenic acid
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deficient ageing animals (88), which probably allows
better preservation of the few remaining w3 fatty acids.
The specific activity of enzyme, but also the total
desaturase capacity of the whole liver must be taken
into account (89).

The reduction of delta-6-desaturase activity can
be compensated by the addition of gamma-linolenic
acid to the diet (90), which results in an increase in
delta-6-desaturase kinetic parameters (Vm) for linoleic
acid and alpha-linolenic acid in ageing animals (91).
Blackcurrant seed "oil contains stearidonic acid (18 :
4w3) (92) and beneficial effects on health have been
observed in man (93).

Hepatic desaturase activities depend on a
number of factors, especially hormonal factors and
vitamin B6 (94); hypertension can also accelerate the
ageing process (95). The combination of vitamin
B12 and phosphatidylcholine appears to attenuate the
age-related learning deficit, at least in a murine model
of accelerated ageing (96). In Alzheimer’s disease,
modifications of the cerebral fatty acid composition
have been correlated with alterations of desaturase
activities (97).

All mechanisms involved in the production and
activity of desaturases can be influenced by the nature
of membrane fatty acids. For example, the activity of
an enzyme of the nuclear membrane of hepatocytes
is dependent on the presence of w3 fatty acids (98).

The fatty acid composition of human adipose
tissue is generally altered during ageing, sometimes
independently of the composition of the diet (99).

Ageing and peroxisomal activities

Peroxisomes participate in oxidation of long-
chain fatty acids, but they are also involved in the
synthesis of very-long-chain polyunsaturated fatty
acids, as, in the absence of delta-4 desaturase (which
would have transformed 22 : 5w3 into 22 : 6w3), 22 :
5w3 are elongated into 24 : Sw3 in the endoplasmic
reticulum and then desaturated by a delta-6-desaturase
into 24 : 6w3, which is then transformed into 22 :
6w3 in peroxisomes (100) (Figure 2). ’

Peroxisomal oxidation of polyunsaturated fatty
acids in the brain decreases during ageing (101).

trans fatty acids

As these fatty acids are non-physiological, it is
reasonable to suppose that their incorporation into
membranes would interfere with the functioning of
these membranes, possibly accelerating the ageing
process. Their harmful effect on foetal and child deve-
lopment has been suspected (102), especially as the
levels of these fatty acids are equivalent in maternal
and foetal plasma, indicating permeability of the
placenta to these compounds (103). trans fatty acids
are known to alter cholinesterases in various organs,
including the brain (104).

The trans isomer of oleic acid is incorporated
into the brain (105). In mice, the presence of this
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trans fatty acid in the diet, but associated with a
borderline essential fatty acid deficiency, only has a
limited effect on cerebral development, but it alters
behavioural tests (106).

trans polyunsaturated fatty acids are incorpo-
rated into the brain (107), in mitochondria and micro-
somes (108), in various cerebral structures, including
microvessels, nerve endings and the retina, which
contain the highest concentrations, twice the levels
observed in myelin and the sciatic nerve. Alpha-
linolenic acid deficient animals incorporate twice as
much trans polyunsaturated fatty acids (109); however,
the brain appears to be relatively protected (110), at
least in animal models.

trans monounsaturated fatty acids must be
distinguished from trans polyunsaturated fatty acids.
One trans polyunsaturated fatty acid, CLA (conjugated
linoleic acid), presenting important favourable physio-
logical effects, can be integrated into phospholipids,
but only to a limited extent in the brain (111), less
than in adipose tissue, muscle, liver and kidneys (112).
However, the effects of CLA on cerebral ageing have
not yet been studied.

The incorporation of trans fatty acids modifies
the level of monoamines in the cerebral cortex; this
effect is reversible for the cortex, but not for the hippo-
campus (113).

Although the production of conjugated polyun-
saturated fatty acids (especially the formation of
oxidation products) indicates destruction of membrane
fatty acids, this is not the only process which alters
the fatty acid composition of membranes during
ageing; a balanced dietary intake of w6 and w3 fatty
acids must be taken into account (114).

Blood-brain fatty acid transport

By definition, essential polyunsaturated fatty
acids must cross the blood-brain barrier, but the
mechanisms of this transport are unknown. Several
hypotheses have been proposed (115), including
possible transport via the choroid plexus (116).

Age-related changes in the microcirculation
include changes in the concentrations of trace
elements, antioxidant enzymes (catalase is decreased,
but not glutathione peroxidase) and fatty acids : the
level of monounsaturated fatty acid increases, while
the level of polyunsaturated fatty acids decreases and
the level of saturated fatty acids remains stable (117).

The specific role of astrocytes in the synthesis
of DHA from alpha-linolenic acid has not been fully
elucidated (118, 119). A possible co-aperation between
astrocytes and endothelial cells of micro-vessels has
been proposed (120). Depending on the conditions,
serum free fatty acids or lipoprotein phospholipids
could supply the brain with polyunsaturated fatty acids
(121). A particular phospholipid, phosphatidylcholine,
may act as a fatty acid transporter to the brain (122).

The major problem in terms of nutritional
physiology concerns determination of the bioavaila-
bility of alpha-linolenic acid and DHA (123).

Oleic acid does not cross the blood-brain barrier
(124).
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Antioxidants and unsaturated fatty
acids in the brain

A Medline database search reveals a small
number of studies in this field : the combination of
“polyunsaturated”, “brain” and “ageing” provided only
about one hundred references!

Although antioxidants are known to be
important, particularly in the brain, the roles of the
various components of vitamin E have been poorly
elucidated. However, vitamin E deficiency is known
to alter the fatty acid-profile of the brain (125), and
alpha-tocopherol is the only effective membrane
antioxidant (126). It is difficult to increase the quantity
of vitamin E in the brain, which is unfortunate, as its
20: 4w6 and 22 : 6w3 fatty acids are easily peroxi-
dized (127). The efficacy of protection against reactive
oxygen species clearly decreases during ageing, acce-
lerating destruction of membrane polyunsaturated fatty
acids, which are less and less effectively renewed,
constituting a vicious circle. An optimal dietary
balance between w6 fatty acids and 3 fatty acids is
therefore essential (128).

What about saturated fatty acids?

The mechanisms of synthesis of saturated fatty
acids have been documented for many years in the
brain (129, 130) and in peripheral nerves (131). Their
intimate mechanisms are currently under investigation
(132). These mechanisms are now universally
accepted, except that lignoceric acid (C24 : 0) can be
partially derived from the diet (133, 134), as illus-
trated by the reduction of lignoceric acid accumulation
in the brain by the presence of monounsaturated fatty
acids in the diet in patients with adrenoleukodystrophy
(135). These studies have mainly concerned myelini-
zation, rather than the ageing process, Polyunsaturated
fatty acids could possibly be re-utilized to synthesize
all types of fatty acids (136).

Practical applications

The polyunsaturated fatty acid requirement of

the human brain is considerable during the neonatal

period and remains high throughout life, in order to
ensure turnover of cell membranes and to preserve the
integrity of cell functions, otherwise the ageing process
would be accelerated. However, these very long chains
are not synthesized in the brain, or only in small
amounts.

During the antenatal period, they cross the
placenta in only small quantities and are not synthe-
sized by the placenta. The brain synthesizes only very
small quantities in adults and almost none in the elderly
(87). It is therefore probably essential to provide them
in the diet. However, baboon foetal tissue has been
shown to synthesize DHA from alpha-linolenic acid
(137). Indeed, infant cerebellar grey and white matter
acids is in relation to age and diet (138, 139).

For all ages in Human, proposed ratio w6/w3 by
authorities is 5 to 6 (140), this number is also valuable
for preterm infant formulas (141).
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Cover of nutritional requirements in France :
pregnant women and nursing mothers

During pregnancy, 600 grams of essential fatty
acid are transferred from the mother to the foetus,
which represents an enormous quantity of 2.2 grams
per day, on average.

A study recently conducted in the Aquitaine
region shows that women of childbearing age consume
90 % of their linoleic acid requirement in their diet,
but only 40 % of their alpha-linolenic acid requirement
(142). Similar results have been found in other
countries, such as Canada (143) and Sweden (144).
This deficiency could be prevented by the use of
rapeseed, soybean or walnut oil. According to the
recommended daily allowance during pregnancy (140),
the dietary fat consumption by pregnant women must
be globally increased by 15 %, but with doubling of
the consumption of DHA and cervonic acid. Fish with
a real nutritional quality could be useful in this
situation, but this may not be the case for fish derived
from fish farms.

The increased requirements for various nutrients
during pregnancy are not considerable, except for
several minerals such as iron, zinc or certain vitamins,
such as vitamin D, but they are important (145).
Following the example of supplementation of milk, it
could be useful to add vitamin D to a seasoning oil,
in view of its liposolubility.

However, the recommended daily allowances
suppose that the future mother’s diet is satisfactory,
which is unfortunately not always the case, as illus-
trated by the SUVIMAX study. A significant
proportion of women consume less than 2/3 of the
recommended allowances for many vitamins, minerals
and trace elements, including omega-3 fatty acids, as
demonstrated by the Aquitaine study. The quality of
the woman’s diet obviously determines the quantities
of w3 and w6 fatty acids received by the neonate
(146). However, the use of linseed oil in nursing
mothers does not increase the DHA level of her milk
(147). In contrast, ®w3 long-chain fatty acid supple-
mentation during pregnancy and breastfeeding
increases the child’s IQ (148, 149). In an animal
model, addition of long-chain fatty acids combined
with a reduction of precursors ensures a neuronal and
glial profile similar to that obtained with maternal
breastfeeding (150).

Blood lipid concentrations of docosahexaenoic
and arachidonic acids at birth determine their relative
postnatal changes in term infants fed breast milk or
formula (151). Moreover, alpha-linolenic acid in
cholesterol esters is a marker of alpha-linolenic acid
intake in newborns (152). ¥

Better dietary polyunsaturated fatty acids for
the brain

What is the better diet for the brain, a diet
containing precursors (alpha-linolenic acid) or long-
chain fatty acids (DHA, cervonic acid)? In other
words, is it better to eat vegetables or fish, bearing
in mind that eggs (so-called omega-3) are situated
between the two in terms of omega-3, as they can
contain both. In fact, alpha-linolenic acid and DHA
are both necessary, but it would be preferable to
consume the precursor that can be utilized by normal
metabolism or oxidized when it is present in excess
(153), rather than long-chain fatty acids, which are
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less effectively metabolized (toxic effects in the form
of haemorrhages at very high doses, such as those
consumed by Eskimos), as the brain is sensitive to
excess levels (154, 19), although peroxidation is not
increased provided vitamin E is present (155).

In view of current dietary habits, the most
effective way to increase monounsaturated omega-
9 and omega-3 fatty acids in the form of alpha-
linolenic acid would be to eat rapeseed oil alone or
mixed with other oils, provided they contain certain
substantial quantities of rapeseed oil, which is not the
case at the present time. The other oils rich in alpha-
linolenic acid are soybean oil and walnut oil, but they
have a much lower oleic acid content.

Fish and “omega-3” eggs provide substantial
quantities of long-chain w3 fatty acids (EPA and
DHA), but farmed fish must have been fed appro-
priate fats : the ®3 content of their flesh can vary by
a factor of 1 to 40 depending on whether they are
fed vegetable oils (copra, etc.) or fish oils.

The nutritional quality of animal products can
be improved by modifying the feed given to these
animals. However, this measure is not very effective
in ruminants, as the microbial activity of the rumen
hydrolyses a considerable fraction of dietary polyun-
saturated fatty acids, transforming them into non-
essential fatty acids. However, this approach could be
useful in monogastric species (such as pigs),
substantial in poultry, spectacular for eggs, and
essential in fish, especially carnivorous fish (75 % of
all fish).

Tables 1 and 2 show the multiplication factors
obtained by providing alpha-linolenic acid (in the form
of rapeseed or linseed) or DHA (in the form of fish
oil). The use of such products induces positive changes
in consumers, especially on .blood lipid parameters
(156).

Table 1. Several examples of the multiplication factor
obtained by feeding with alpha-linolenic acid (rapeseed
or linseed).

: : Omega-3
Alpha;llir(liolemc long-chain
fatty acids
Pork rib-eye steak 3t06 0.9
Beef rib-eye steak 1 to2 1
Chicken thigh 9 3
Egg 1 to 40 2to5

Table 2. Factor of multiplication by feeding with oils
of fish.

Alpha-ll.rtliolemc l(?nrg?gl? a? n

aci fatty acids
Beef loin 1.3 1to2
Chicken thigh 1 2t07
Salmon - 5t 20
Egg 4108 2106

According to 11: (157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 156).

171



In fact, the most spectacular results presented in the
above two tables are obtained by a very careful
selection of the feed given to animals and would be
relatively expensive. Fortunately, in practice, a team
working in Brittany (156) has shown that replacement
of part of the animal’s feed by cooked linseed increases
the cost of feed by about only 5 % for beef cattle or
poultry; which corresponds to an increase in the total
cost of production of about 1 to 2 %, for an extremely
favourable result. It would be possible to exactly double
the alpha-linolenic acid content of the meal, thereby

reaching recommended daily allowances : for example,
€ggs would contain 12 times more of than this pre-
cious fatty acid, rabbit would contain 10 times more,
chicken would contain 4 times more, and pork and
milk would contain 3 times more!
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