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Changes in Auditory Brainstem Responses in
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Function of Age in Rats
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Abstract

Auditory brainstem responses (ABRs) to click stimuli have been compared in young (21-
day-old), adult (6-month-old), and old (18-month-old) rats fed a normal (Arachid-Colza) or
an alpha-linolenic acid deficient (Arachid only) diet. Wave I amplitude and latency did not
show any significant change with either age or diet. However, wave IlI showed a progressive
decrease in amplitude and latency from young to adult and from adult to old rats having a
norma! diet. With alpha-linolenic acid deficiency, wave IIl amplitude and latency values
decreased faster than in the normal diet control groups. Although final values in the old
groups with the two diets were similar, with alpha-linolenic acid deficiency values for wave
III decreased to this final level in the adult group. These data indicate that the central
auditory nervous system ages faster, or earlier, with a fatty acid deficiency.

introduction

Fatty acids control the structure and function of biological

. membranes, including those from nervous tissue. Some of these

fatty acids are polyunsaturated, and are derived from the dietary
precursors linoleic and alpha-linolenic acid.

The essential nature of alpha-linolenic acid is beyond doubt.
A deficiency leads to anomalies in the composition of nervous
membranes in various species,!!! and in their architecture and
function. This leads to perturbation of both neurotransmitter
levels'? and electrophysiological parameters. as indicated by the
electroretinogram, and to alteration in learning abilities, and
greater sensitivity to neurotoxins.>>%

Nutritional deficiency in (n—3) fatty acids alters the brain
structure and function in humans as previously demonstrated in
animals. The biochemical correlation between dietary fatty
acids. milk composition and, possibly. brain composition has
been demonstrated in humans.?'-* as very long polyunsaturated
chains are present in human milk and because of the vast
amount of these fatty acids deposited in nervous tissue during
the perinatal period. Retinal and visual cortex electrophysiology,
and intellectual functions are improvefl in babies fed a diet
enrichedin (n—3) fatty acids.?52® Some neurological differences
have been found between nine-year-old children fed breast milk
or formula milk as babies. It is suggested that very long poly-
unsaturated fatty acids may explain this discrepancy.”’

As dietary alpha-linolenic acid clearly controls some
electrophysiological measures, such as the electroretinogram in
various species including monkey and human,'='-¥-32 this work

was designed to determine whether auditory evoked potentials
are also affected. .

In order to study the peripheral and central changes
associated with the different diets and as a function of age,
eighth nerve and auditory brainstem responses (ABRs) were
recorded and measured in the rat. These responses present as a
sequence of five waves of roughly 0.6 ms intervals (Figure 1).
Waves 1 and III were particularly studied because they are the
most prominent waves in rat’? and their amplitude and latency
are the best indicators of peripheral and central auditory
function, respectively.3

Materials and Methods

Animals

Female Wistar rats originating from Iffa Credo (I'Arbresle,
France) and bred in the laboratory were divided into two
groups. The two groups were fed the same diet, except for lipids
at least 15 days before breeding. The total amount of lipid was 6
per cent in each diet. In the group fed an alpha-linolenic acid
deficient diet. the lipids were peanut oil containing 1200 mg of
linoleic acid per 100 g diet (18:2(n—6)) (Arachid (A) Group). In
the group fed the control diet, non-deficient in alpha-linolenic
acid, the fat used was a mixture of peanut oil and rape seed oil
containing 1200 mg linoleic acid and 200 mg alpha-linolenic
acid per 100 g diet (Arachid-Colza (AC) Group). Diets were
given ad libitum. The quality of oils was carefully examined with
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Figure 1. Typical recordings of auditory -brai-nstem
responses (ABRs) in a normal adult rat in response to clicks of
different intensity levels. On the upper trace at 100 dB peSPL,
the successive peaks (I to V) are indicated. Latencies of peaks I
and III are measured from onset of click stimulus at the ear
drum (time 0). Amplitudes are measured as indicated (vertex

positive up).

regard to fatty acids and antioxidants. The toxicological analysis
(performed by the Institut National de la Recherchg Agrono-
mique, Dijon, France) showed there to be no contaminants and
no detectable level of oxidized fatty acids or of ‘trans’ structures.
The diets were prepared by the Institut National de la Recherche
Agronomique (INRA-CNRS), 78350 Jouy-en-Josas, Fr.ance.
Breeding and experimental rooms were thermostatically
maintained at 21+1°C. The offspring from these two groups
were maintained respectively on the same AC or A diets and
divided into three subgroups of young (y) 21-day-old rats, adult
(a) 6-month-old, and old (o) 18-month-old rats. The number of
animals from which data were actually obtained is shown in
Table 1 relative to the total initial number of animals in each
group. Some animals, particularly in the older groups, died
before measurements were taken or were eliminated due to the
presence of otitis media, which was systematically checked.
Experimental protocols were approved and met government

by "

guidelines (Ministry of Agriculture, authorization No. 03007,
June 4, 1991).

Electrophysiology

The rats were anaesthetized with an intramuscular in jection
of | ml/kg body weight of a mixture of two volumes of
ketamine chlorhydrate (Ketalar, Parke Davis, 50 mg/ml) and
one volume of 2 per cent xylazine (Rompun, Bayer). Stainless
steel needle electrodes were pushed under the skin at the vertex,
left (ipsilateral) mastoid and neck (ground electrode). Signals
between the vertex and mastoid were amplified in a faboratory-
made amplifier (x 20,000, 100-3,000 Hz) and averaged in a
computer-controlled signal averager system (CED 1401plus
Cambridge Electronic Design, Cambridge, UK). Click and
tone-pip acoustical stimuli were generated in a PC controlled
signal generating board (0.1 ms pulses of alternate polarity for
click generation, gaussian shaped envelopes of 4 ms duration
for tone pips at octave frequencies from 1 to 32 kHz), amplified
and sent to a headphone (Sennheiser, HD 480 II) placed 2 cm
lateral to the tested (left) ear. Stimuli were presented at the rate
of 10 per second; 100 to 1,000 responses were averaged.
Thresholds of responses were determined for wave III, which is
the most prominent wave at low levels of stimulation, at the
different tone-pip frequencies (ABR audiograms), and
responses to the click from threshold to 80 dB peSPL were
recorded in 10 dB increments. Amplitude and latency were
measured for waves I and III (Figure 1), and the input/output
functions were analysed. Statistical differences were evaluated
between each condition pair on input-output amplitude and
latency functions using two-way ANOVA.

Resuits

The weight of the animals changed with age, from 60 + § gat
21 days to 434 * 23 g at 6 months and 508 + 50 g at 18 months
in the control (AC) groups. There was no significant difference
in weight between this control (AC) group and the experimental
(A) group. :

Audiograms

All rats in all the groups except the control old group (ACo)
gave ABR audiograms within normal limits. In group ACo. two
apnimals had a normal audiogram and four showed slight
threshold elevations at the highest frequencies, which resulted in
a non-significant overall mean high frequency threshold
elevation (Figure 2). '

Input-Qutput Amplitude and Latency Functions

There was no significant difference in wave I amplitude and
latency with age in either group at any intensity, whereas the
later waves showed consistent changes (Figures 3 and 4).

Table 1

Diet Young Adult oid
Arachid + colza ACy = 10/10 ACa=6/8 ACo = 6/8
Arachid Ay = 9/10 Aa = 6/9 Ao = 477

Final/initial numbers of animals in each group. (A=arachid, C=colza. y=young, a=adult, o=old).

4
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2. Wave 111 threshold intensity as a function of frequency (ABR audiograms) in young, adult and old control rats (normal
arachid-colza diet, left) and in alpha-linolenic acid deficient rats (arachid alone diet, right).

There was a significant difference in wave III amplitude in the
young rats between the two diets (ACy and Ay, p<0.05). All the
other differences were highly significant (p< 0.001).

In both the control (AC) and the experimental (A) groups,
wave III showed a progressive decrease in amplitude and in
latency with increase in age. The values for adult rats were
between the young and old values (Figures 3 and 4).

The amplitudes in the control adult group (ACa) were
significantly different from those in the young (ACy and Ay) and
in the old (ACo and Ao) groups (Table 2). In the experimental
group, the amplitude values for adult rats (Aa) were statistically
different from the values in the young rats (ACy and Ay) but
similar to those in the old rats (ACo and Ao). Amplitude values
in the old groups were similar.

The decrease in wave III latency, compared with the
unchanged latency of wave I (Figure 4), resulted in a shortening
of the I-III intervals. Here, also, changes were similar from
young to old rats in the two groups Wave III latencies in all old
groups were different from those in the young groups (Table 2).
Wave I1I latency values in the control adult group (ACa) appear
somehow in between the values in the young and old groups
(Figure 4, left). while in the experimental group (Aa) they were
more similar to those of the old group (Ao) (Figure 4. right).
However. the differences were not significant (Table 2).

Discussion

Maturation of the cochlea and eighth nerve is achieved in the
rat at post-natal day 16. however, the central nervous system
matures over a longer period. Thus at the 21st day the auditory
periphery in rats. but not the CNS, is mature. At six months the
rats are young adults while at 18 months they can be considered
as old. although at an early stage, since ageing in the rat can
extend up to more than 33 months. bl

Since the threshold audiograms, and the amplitudes and
latencies of the scalp recorded click evoked eighth nerve
compound action potentials (wave I) as a function of click level,
do not change significantly with age. it appears that normal
ageing had no effect on the peripheral auditory function. Most of
the studies dealing with ageing and ABRs have described an

ABRSs. Ageing and Linolenic-acid
Deficiency

increase in wave I latency which is due to peripheral ‘presby-
acusis’, a progressive high-frequency hearing loss which develops
in man (as in most mammals) with age and which corresponds to
an alteration of the sensorineural structures particularly at the
base of the cochlea (which is most sensitive to any adverse
condition such as acoustical overstimulation, metabolic disorders
or ototoxic drug treatments). This basal impairment introduces a
travelling wave delay from the oval window to the remote site of
activation on the basilar membrane of the remaining functional
sensori-neural structures. Although we did not monitor
thresholds at the highest frequencies (above 32 kHz), the fact that
wave I latency does not increase with age, whatever the level of
click stimulation, typically indicates that the base of the cochlea is
not affected. Only the slight high-frequency threshold elevations
in the old control group would indicate potential development of
peripheral ‘presbyacusis’. The results of the present study in
normal ageing rats are in agreement with those of Crowley et
al.3%3% who have shown that both cochlear electrophysiological
responses and hair cell counts vary little' in rats until 18 months.
Only very old rats show significant cochlear changes. Keithley
and Feldman?’-*® also showed significant hair cell and spiral
ganglion cell losses only at and after 23 months. These changes
with ageing are far less pronounced than in man.>*4

However, changes with age develop in the later wave 111
which, assuming that there are no changes at the periphery,
would reflect changes in the central auditory nervous system
(CANS). In the control group (AC), the very significant changes
from young to adult rats could be related to maturation in
the central nervous system.!! The shortening in latencies
particularly could correspond to an increased velocity of influx
associated with myelination of the fibres. However, the decrease
in amplitude does not fit with such a decrease in latency which
should be in support of a better synchrony of activities and thus
of a larger amplitude of the responses. Since such a decrease in
amplitude and in latency continues with age, we should consider,
however. that they are related to normal ageing, although at this
point it is difficult to determine whether such changes are due to
typical neural deterioration or to other physical and morpho-
logical changes affecting the far-field electrical conditions of
recording the responses from the remote central auditory
structures (head size. body weight, temperature, etc.).
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Figure 3. Mean amplitudes (+ sd) of waves I and III as a function of click intensity in the young, adult and old rats in the two
groups with normal (arachid-colza, top) and alpba-linolenic-acid deficient (arachid, bottom) diets respectively.
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Figure 4. Mean latencies (+ sd) of waves I and III as a function of click intensity in the young, adult and old rats in the two
groups with normal (arachid-colza, left) apd alpha-linolenic-acid deficient (arachid, right) diets respectively.
‘f‘;

latencies of waves Il and Il1. and thus rather a shortening of the
I-II and I-III intervals.** Also, single unit studies in old
Sprague-Dawley rats’ lateral superior olive (LSO) did not show

The present data from the normali control rats confirm many
other studies in various species which do not show any
significant change in the latency of ABR waves as long as there

is no significant hearing loss*> A more recent study in humans
describes an increase in wave [ latency but no changes in the

16

any increase in conduction time.** In our study. not only do we
not observe an increase in wave [ latency, but we observe a

Audiology. Volume 38 Number |
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Table 2. Two-way ANOVA analyses of amplitude and latency functions (respectively above and below the diagonal of the table) in

the different groups.

Amplitudes
Ay ACa Aa ACo Ao
ACy LL L] *s e s 88
Ay , . e
Aca *8s
Aa L 2 2
ACo i
- AO *e e
Latencies
*. p<0.05 ***: p<0.0001

decrease in wave III latency with age, so that the end result is the
same as that reported by Costa et al.,*? i.e. decreased I-111
intervals,

However, the study of Finlayson and Caspary** has also
shown that LSO single unit responses in Sprague-Dawley rats
do not change, either in latency or in discharge rate levels Thus
if the decreased amplitude of ABR waves is related to neural
impairment, that should correspond to a decrease in the number
of activated neurones, due either to a neuronal loss or to a
decrease in the number of synaptic terminals.*S '

Amplitude of the brainstem responses and their change with
age have rarely been studied, due to the high variability of the
amplitude measurements, compared to the accuracy of latency
measurements.*® However, Beagley and Sheldrake*® have shown
in humans that latencies do not change with age but amplitudes
decrease significantly. Psatta and Matei’ have presented
normative values of ABRs amplitudes from 1 to 70 years of age
in normally hearing subjects. They found highly significant
changes in amplitudes as a function of age: they describe an
increase in amplitude from | to 10 years of age, for all waves
except wave I, followed by a decrease of amplitude from 10 to 70
years, with a slower rate from 50 to 70 years. Our observation of
a significant decrease of wave III amplitude with age in rats is in
good agreement with this human data.

The differences between the control (AC) group and the
experimental (A) group are in the amplitude values of young
and adult rats. This difference is small in the young groups (ACy
and Ay). However, the alpha-linolenic acid deficient adult rats
(Aa) have amplitudes similar to the old rats of either group (Ao
and ACo), while the control adult group (ACa) differs from
these two old groups. Although in these experiments latency
changes with age between control and experimental groups are
not significantly different, there is a tendency similar to that
observed for the amplitudes. The small number of animals. and
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