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Abstract: Purified rat briin microvesséls have bees shown
to hydrelyze radiclabeled sphingomyelin by nieans of two
different énzyme syStoms. Enzymatic activity was detected
at pH 7.4 and was strongly stimulated by magnesium or
manganese and inhibited by dalcium. Activity at pH 5.1 could
also be found and was not dependent on any of these cations.
At neutral pH and in the presence of magnesium, the rate
of sphingomyelin hydrolysis did not exhibit a litiear relation-
ship with protein concentration. In Contrast, increasing the
protein concentrition from 0.05 to 0.5 mg/ml resulied in a
constant increase of sphingomyelin hydrolysis at pH 5.1. Ki-

netic parameters of both neutral and acid activities have been
determined and were similar in magnitude to values reported
previously for neural sphingomyelinases. This work dem.
onstrates the occurrence of z neutral sphxmmydmase ac-
tivity in purified rat brain microvessels, an observation ramng
the question of its role at the level of the blood-brain inter-
face. Key Words: Sphingomyelinase—Magnesium—Neutral
sphingomyelinase—Acidic sphingomyelinase—Brain—Mi-
crovessels. Carré J.-B. et al. Purified rat brain microvessels
exhibit both acid and neutral sphingomyelinase activities. J.
Neurochem. 82, 1294-1299 (1989).

The blood-brain barrier consists of a continuous
layer of endothelial cells joined together by tight junc-
tions, which do not allow intercellular solute diffusion
(Oldendorf, 1977). Hexoses, amino acids, purine com-
potinds, and mo6nearboxylic acids, as well as several
other physrologtml compounds, aré tranisported across
the blood-brain barrier with the aid of carrier-mediated
mechanisms (Pardridge and Oldendorf, 1977). More
recently, several studies were designed to investigate
the relationships between synthesis and degradation of
brain microvessel hplds and the functional role of this
metabolism. Substantial hpoprotem lipase and acid bi-
pase activities were measured in rabbit brain micro-
vessels, observations suggesting that lipoproteins are
metabolized within the cerebral mi¢rovasculature
(Brecher and Kuan, 1979) Rat brain microvessels ex-
‘hibit diacylglycerol lipase and kinase activities (Hee-
" Cheong ct al., 1985). Both fatty acid oxidation and
glycolysis s\lpply energy to the endothelial cells (Gold-
stein, 1979; Betz and Goldstein, 1981). In rat brain
microvessels, fatty acids might also be diverted to pros-
taglandm and leukotriene synthesis (Gerritsen et al.,
1980: Baba et al., 1985). A polyunsaturated fatty acid-
specific acyl-CoA synthetase and a nonspecific acyk

CoA synthetase were shown in rat brain microvessels
(Morand et al., 1987). In addition, radicactive lipids
are synthesized by rat brain microvessels incubated
with [1-'*Clacetate (Homayoun et al., 1985).
Numerous publications on sphingomyelin hydrolysis
activities in animal tissues have described two different
sphingomyelinase enzymes. The first one shows max-
imal activity at ~pH 5.0, has no requirement for di-
valent cations, and has been found in animal tissues
(Kanfer et al., 1966; Callahan et al., 1974). It is assumed
that this lysosomal acid enzyme is responsible for
sphingomyelin hydrolysis within phagocytic vesicles
(Fowler and DeDuve, 1969). The second one exhibits
an optimal pH of 7.4, has an absolute requirement for
magnesium or manganese, and is not ubiquitous (Gatt,
1976; Rao and Spence, 1976). In the brain, neutral
sphingomyelinase is located within the gray matter and,
in particular, in the striatum (Spence et al., 1978). It
has also been characterized and localized in bovine
adrenal medulla (Bartolf and Franson, 1986) as well
as in cultured neuroblastoma cells{Spence et al., 1982)
and hen erythrocyte membranes (Rousscau et al.,
1986). The neutral magnesium-dependent enzyme is
thought o be aimost exclusively present at the level of
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" Dettrad’ (Mw= 70, ooowu o‘bmned from Pharmac:a,
- the nylon ‘mesh {pore size = 118 zni) from Desjobert (Paris,
. ‘France), anéﬁh;ggeadsﬁdfni Bnﬁ(Mensugen F.R.G.).

[cholme-methyl-“C]Sphmgomyelm (50 mCi/mim®l) was ob-

73: aained from Netv (England Nuclearr(Boston; MA, US.A)),

andACS-ll scingillation:iqyid was from: Amersham-{Bucks,

(UK EDTA; Triton X-100-brain:sphingamyelin, and al-

h@gn :;,bovme.. fatty m,ﬁge,, {(acugq V) were purchased
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‘Prépartﬁ e purified rat Fiam ﬁnerbvcssels ’
7~ Putified rat bisid MicroVesséls-were prepared-according to
1r+i. the-method deseribed: by Goldstzinst-al. {197 5):and3lightly
£ medified:as follows. For.one preparatiot: 1 5-Sprague-Dawiey
573ty (2 months old) were killediby degapitation. The brains
it g ;were immediately removed: and placed in. jce-cold- buffer,
qude of. oxygen—samm Ranger ntaining 1.2 mM
(pH 7 4), an;% % (Wif yol) “ajbumin.
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ge rax s&iﬁ céfebe uin, and mehinges’ were diséarded.

id“plexus and ependyma ...
wete rinced With: séissors in buffer? THetisSue’ Wasomog- .
enizédin ﬁslass”homogemeMMT'BOn pestie’ (025 mm

hcrmspheres "of chbrof

G cléarance)at-390 Tpm (20 stiokes)i %elsc‘)mogenate was cen- |

s mnfuge:tat*l 000:2 for. 10 min. The:pelles was resuspended
+onim icewcold buffer comainjng 1.7.5% (wi/volkdextrantoacon- -~

. Gentration of 1 g of fresh tissue/ 13 ml-of the dextran solution
.--and cenmfuged at4, 000 g for 15 min. The new: peflet, which

nsxsm& of. free]nuclen. debris, and. mLcmves;gls. was resus-
pended in buffer and then passed through nylon mesh, having
a pore size of { {8 um under gentle vacuum. The microvessels
were separated from nuclei by passing the suspension through
a 1.2 X 1.5-cm column containing 0.25-mm-diameter glass
beads. Nuclei and debris were removed by washing with
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brains were homogenized in ice-cold water. The protein con-
tent of the homogenized preparation was determined by
means of a fluorescence procedure adapted from that of Boh-
len et al. {1973). Homogenates were diluted to a given protein
concentration before-final dilution to initiate incubation.
[choline-methyl-'*C]Sphingoniyelin. was diluted with unla-
beled sphingomyelin to a specific radioactivity of 0.2 mCi/
mmol and mixed with Triton X-100 in chloroform/methanol
(2:1 vol/¥ol). The. mixture was evaporated to dryness under
nitrogen, solubilized in concentrated buffer 272 mM acetate
or Tris-HCl buffer), heated at 50°C for | tin, and imme-
diately cooled down to obtain a clear solutién (Barenhoiz et
al., 1966). The incubation was initiatéd by‘mixing 90 sl of
the microvessel homogenate or the forebrain homogenate
with 110 ul of the above radioactive sphingomyelin solution
(Rao and Spence, 1976). Fingl conditions were as follows:
0.02-0.4 mg of protein/ml, 252500 uVf radiolabeled sphin-
gomyelin; and 0.1% {wa/vol) TriteerX-100 in a final volume
of 0.2 ml. The final bulfer concentrations were cither 150
mM sodium’ dcetate (pH: 5i1) or 150 mM Tris-HCl and 6
mM MgCl; (pH 7.4). Upder standard_conditions, sphingo-
myelinase was assaved.fqr 20 min at pH.%4-and for 60 min

. atpH §.1. To stop thereaction, mhmpk«\@s cooled down

in ice-cold:water and. received 0;l:amb-of 10% -albumin in

- water (wt/vol). Then, 0z mi of 100% &wtsvol) tiichlordacetic
- acid-was added, followéd-by 0:8:m] 6f' water{Sloan;4972).

Each' tubk was vottex-mifxed ‘and “deitrifuged Tor#%nin at

"~ 10,000 rpm in a Beckmar MicTofuge. Intact sphingommyelin
coprcc:pnated \vnh

*sbumin’ mfthc Ilel, whe;;as “the su-

pernatant retained radiolabeled phosphorylcholme ‘released
on hydrolysis of [choline-methyi-'*C]sphingomyelin. The acid
enzyme is referred to as sphingomyelin phosphodiesterase
(EC 3.1.4.12). Finally, 0.8 m] of the supernatant. {total volume
of 1.2 ml) was counted for radioactivity in 10 mi of ACS-Ii
scintillation liquid. All enzyme activity values were calculated
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observed!between sphingomyelin conccntratum ‘ahd
phosphdryl%hébné fon{nauon (Fig... 2)¢ ‘Replotting
sphmgomyelmase activity at pH74in thc double-re-
ciprocal Lingweayer-Burk presentation permitted the
calculation of an apparent K,;:of 83 aM and an ap-
parent V. of 5.9 nnfol/mg of protéin/min. Further-
mm, mcrmsmg mncentrauqns qf sphingomyeliti were
Qddnggo m;p;ovesscl homogcgatc (0.] mg of protein/
ml), and sphingomyelinase activity was measured at
pH 5.1 andMnithe absence’of mignesium. Similarly, a

Mnehgeﬁs-Mem iirﬁé"ﬁyperbohc Telationship was
dbiserved “bétieen ‘sphingomyelin concentration and

phospharylcholine formation{Fig. 3). An-apparent Ko,
of:l 14-uAf and.- an-apparent Vi, of 0.8.nmolfg of
protein/min were dctermmed forthe*pH ST sphm-
gomyelinase sBGVitY 1007 o

.. Sphingomyelinase. ; acuvms were also detqnuneg in
mt forebrain lhomegcnatewm pH 7.4 and.in.the: pres-
efice - of magnesium, forebrain -homogenate: sphingo-
myelinase exhibited an apparent K of 61 uM'and ap
apparent Ve, of 7.2 nmiol/fig of protein/min (0.4 mg
of protein/ml). The latter calculation, was performed.
although nodinear relationship was observed between
protein-coneenitration and the' pH-74 Sphmwmyehn-
ase m:tmtyr At,pH 5.1 and in the absence’ ‘of magnc
sum, forebmpx;,l;pmogepate sphmgomychnase exhib-
ited an apparent K,,, of 190 uM-and an apparem V,,.,,l
of lr7 #mol/mg of protem/mm Lo
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The ’ datd’, prtsemed Jn this article prowde 3 dcscnp-
tion of two separate sphingomyelinase activities in. Pl
nfied fat-brain microvessels: 'IIhese Woactmtmbear
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Q. 2. Effect.of. radao!waied ‘sphmgomyelm eom:enttanon on
sphingomyelihase activity at pH 7.4 in purified.rat brain microvesse!
heefiogeniates. Purified rat-brain microvessel homogenates (0.4 mg'
of protein/mi) were incubated for 20:min‘at 37°Cin-the presence
of 25500 wM radiolateled sphingomyetin, 8.1%{wt/vol) Triton:X-
100, 150 mM Tris-HCI, and 6 mM MgCl, at pH 7.4. On incubation,
the reaction was stopped, and sphingomyelinase activity was de-
termined as described in Experimental Procedures and expressed
as nmoi of sphingomyelin hydrolyzed/mg of protein/min. inset
Repilotting in the double-reciprocal Lineweaver-Burk presentation.
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gevcraj’ﬁi ‘ sphi gomx rHIi;’n “’&
“$tibed ?revmhsiy iif tissués ‘of neural origin. At pH
S “sphin, orﬁyélirfas; wad's suinul{ned' by m mum
“and*‘étron y imhibited by EDTA, 'observations in‘ i
Eeating ‘tHat endogenous magriesium ‘i"mgh t' be-fespon-
sité’ for theremnairitly acﬁwiy observedin theaéti‘sﬁ! IV
f'this particuldr cation. Mangahese was t
‘a pitent énlfaricer of the deutfal sphin § 53&,3%
“¥ids Hifkady shiown in the adténal medulfd 4nd'the braiﬁ
(R %nd Spence, 1976; Mm&ﬁ&h&%’wn 1985
“THi¥ ihhibitory effect of caldum‘(‘rablef) &ligs ts
i tind o e il calion o G
i;t prov1 ng the’ s’hmulatbi'y ‘effatt; ﬁxtjﬁenous
fheésium ‘or’ mangznese’ sﬁg{.ﬂy stifnuldtéd the acidi¢
sph hgomyelinase at:tfv:ty. ereas EDTA hadonly a
small effect. This suggests that the magnwum (man:
gancsc)-depende?; sPhlngomyehnase retams  some ac-

At neutfal pH_ and undc: thcr condsuqnstdkcpbed
bgcxn, ng. Imeanty was obtamnd when inc
proteip “concentration f:om 0.02. to 0. 04 mg/ml and
using. cither crude-rat:beain homegenates- (data: nat:
shown) or purified rat brain. microvessels as-the source
of enzyme (Fig. 1). Similar data have been reported by
Gatt et al. (1978) usidg human'Brain neutral sphin-
gomyelinase. In contrast, Rao and Spcncc (1976) de-
termined. that’ linearity with concentrations of crude
human brain. homogenate protein couldbe obtained
up to 0.6 mg/ml with' pH 7.4 sphingomyelinase. The
same observation was made by Bartolf and Franson
(1986) using adrenal medulla homogenate up t0 0,16
mg of protein/ml. These conﬂncung obscrvauons, in-
cluding ours, form the base of a poorly understood
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issue. Using the work of Matheson et al. (1981), we
calculated that endogenous sphingomyelin woujd.
resent no more thah 15% of ddded mﬁloacuv:ispm
gomyelin at 0.4 mg of protein/ml of microvessel ho-
mogenate,.a result indicating that the measurement of
sphingomyelinase activity in the brain microvessels
would be little affected by isotopic dilution.

. Kinetic ﬁarameter values of both acid and neutral
sphingomyelinases “in_ rat forebraiti | *homogenates
slightly differ from tifose determined in other studies
usmg different sources of ¢nzyme and different con-
ditions of ificubation. These conditions might account
for the discrepancies in activitiag. Using bavine brain
sphingomyelin, Rao and Spence ¢1976) calculated a
Ko of 100 uM at pH Mm human rdin hamogenate
supernatant and 66,,(LM at:pH 7.4 in human brain ho-
mogenateé pellet; at both pﬁvﬂua, Vhax Was 3.3 nmol/
mg of protein/min; InFnostsTidies; the initial velocity
of sphingomyelinase activity.atpH 5.0 and 7.4 ranged
between 0.3 and 5.5 nmol/mgglf protem[m'g

ivity 1 %4;

“atacidic pH. This with-purified &
_microvessels wdnmmmbaum~ wass »pcrforme&awuh
->0.05 img -of protein/mb The ¥ of the eutrl én-

*zyfh’bin the mlci'd\#esﬁéfs xssmnfgi; ) that mi

3 ) i Bécan % 1be Jati emsgn averag of the

jugnactwm«m the gray.masier-(Spence ¢t al; 1978)
- and :theJow activity imthe-white-matter, the: miero-
vessels exhibit an activity that is intermediate between
those two structures and significant when compared
with many othe 7. tissues, Indeed,, the activity, of 1he

ggut’él imsqmgﬂ»pasg Jin purified, m‘at bmé‘.;mc?}

s not reflect exactly its activity, \a s:;u and

At nqewgt‘ detg%g% The | prcscr;gp

h;ngo pyelingse in brain microvessels m hnked

‘, x}: ign rt, gccsses cxxsu @t ths lcvngof n;.;qb-
c

_p[ and Fran;
’ui:f gﬁa% m

SPh 9’, it and phosphth pr.
altcnng mbr “ctos hst:%‘cr:fut; The) prsscn!;—of agxgnc
% t' v ‘ Urprising,. becaussn hasrbem aln;ﬁqy
€l

mammaf ussye. The pey-
?Q V¢ a mare li'l'!‘;rfnrxcteclﬂaq

tnvn, hqncemmacme inendothelial celfs n mbt
¢ventually pravide cjues 10 its, role in mammaha L tis-
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