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Effect of Dexamethasone on Transport of a-Aminoisobutyric
Acid and Sucrose Across the Blood-Brain Barrier
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Abstract: The effect of glucocorticoids on the blood-brain
barrier (BBB) was studied in rats following a single injection
or 3 days of dexamethasone administration. Tracers with a
low permeability across the intact endothelium, ['*C]sucrose
and a-[*H]aminoisobutyric acid ([*H]AIB), were simulta-
neously injected intravenously in untreated rats or in rats
treated with dexamethasone. Unidirectional blood-to-brain
transfer constants (K;) in 14 regions of the rat brain were
determined. In regions of control brain, average K; values for
AIB and sucrose were ~0.0020 and 0.00060 ml g~! min™!,
respectively. The lowest transfer constants were found in
caudate nucleus, hippocampus, white matter, and cerebellum.
In dexamethasone-treated animals, K] values for both sucrose

and AIB markedly decreased by 30-50% in almost all brain
regions. These results indicate that a single injection or 3
days of treatment with dexamethasone causes an apparent
reduction in the normal BBB permeability, and dexameth-
asone may greatly interfere with drug delivery into brain.
These observations may have an importance for the admin-
istration of drugs in brain disease in the presence of steroids.
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Anatomic and physiologic evidence indicates that
an intact blood-brain barrier (BBB) is a prerequisite
for maintaining homeostasis within the CNS. The BBB,
a continuous cellular layer formed by endothelial cells
of brain capillaries that are joined by tight junctions
(zonulae occludens), restricts the passage of polar com-
pounds and macromolecules from blood into the brain
interstitium (Reese and Karnovsky, 1967; Rapoport,
1976; Bradbury, 1979). Several lipophilic drugs, some
of which are widely used (local anesthetics, steroids,
and tranquilizers), are known to alter membrane per-
meability (Seeman, 1966). Some of these drugs could
influence BBB permeability. Steroids are of interest
because dexamethasone (DXN) and other synthetic
glucocorticoids are commonly used in clinical treat-
ment for cerebral edema (Rasmussen and Gulati, 1962;
Fishman, 1982).

Numerous studies have demonstrated that steroids
can result in a rapid and dramatic decrease in the flux
of water across the BBB (Fenske et al., 1979; Yamada
et al., 1979; Sztriha et al., 1986). DXN also lowers

e

experimentally induced increased cerebral vascular
permeability associated with drug-induced hyperten-
sion (Bloomstrand et al., 1975; Johansson, 1978; Ziylan
et al,, 1984a), convulsive seizure activity (Eisenberg
et al., 1970; Sztriha et al., 1986), ethanol toxicity (Ro-
sengren and Persson, 1979), hyperammonemic coma
(Sears et al., 1985), tumor (Shapiro and Posner, 1974;
Yamada et al., 1979), cerebral infarction and hypoxia
(Fenske et al., 1979; Barbrosa-Coutinho et al., 1985),
and osmotic BBB injury (Neuwelt et al., 1982). It has
also been shown that DXN reduces the normal per-
meability of cerebral blood vessel to horseradish per-
oxidase in mice (Hedley-Whyte and Hsu, 1986) and
the permeability surface area product (PA) for water
in the cerebral cortex of rats (Reid et al., 19834,b).
These observations and the fact that both sympa-
thetic stimulation (Edvinsson et al.,, 1977; Bill and
Linder 1979) and corticosterone replacement after total
adrenalectomy (Long and Holoday, 1985) are asso-
ciated with a decrease in the permeability of the BBB
to macromolecules led us to speculate that adrenal
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corticosteroids might also specifically influence the
permeability characteristics of the undisrupted normal
brain microvasculature. Therefore, we investigated the
effect of acute and subacute DXN administration on
the permeability of the BBB by using isotopically la-
beled small compounds with a low permeability across
the intact endothelium, such as sucrose (Ohno et al.,
1978) and a-aminoisobutyric acid (AIB) (Blasberg et
al,, 1983).

MATERIALS AND METHODS

Twenty-six adult male Sprague-Dawley rats weighing 200-
250 g were subjected to studies of the effect of DXN on BBB
permeability. DXN (Soludecadron; Perouse Rantigny Lab-
oratories, France) was administered at 2 mg kg™' daily for 3
days or was injected intraperitoneally 3 h before the injection
of radiotracers. A control group comprised six animals re-
ceiving the same amount of isotonic saline (0.9% wt/vol
NaCl).

Animal preparation

The rats were anesthetized with pentobarbital sodium (35
mg kg™! i.p.), and catheters filled with 100 IU of heparin in
isotonic saline were inserted into a femoral vein and artery
for blood sampling and administration of radiotracers. Body
temperatures were monitored with a rectal thermometer
probe, and external heat lamps were used to maintain body
temperature at 35-37°C. '

Isotopically labeled substances

[*H]JAIB (33.5 Ci/mmol) was obtained from New England
Nuclear (Boston, MA, U.S.A.), and [U-"*CJsucrose (>350
mCi/mmol) and [*H]dextran (140 mCi/g) were from Amer-
sham International (U.K.). The molecular weights for
[*H]AIB, ["*C]sucrose, and [*H]dextran were reported to be
103, 342, and 70,000, respectively, with 99% purity.

Experimental procedure

Cerebrovascular permeability was determined simulta-
neously for [*H]JAIB and ['“C]sucrose. Five microcuries of
[**C]sucrose and 25 uCi of [*HJAIB were injected intrave-
nously as a bolus in DXN-treated or in untreated control
rats. Serial blood samples (100-150 ul/sample) were drawn
from the femoral artery and rapidly centrifuged. The animals
were decapitated at the end of the experiment, 10 min after
injection of radiotracers. The brain was quickly removed and
dissected into several regions. All tissue samples were placed
in preweighed counting vials and reweighed to determine
their weights. Sample solubilization was accomplished by
adding 1 ml of Soluene-350 (Packard Instruments, Downers
Grove, IL, U.S.A.). Whole blood samples were decolorized
with hydrogen peroxide before counting. Finally, 10 ml of
scintillation fluid {Toluene Scintilator; 0.1 g/L of 1,4-di[2-
(5-phenyloxazolyl)]benzene and 5 g/L of 2,5-diphenyloxazole;
Packard} was added to all tissue, plasma, and blood samples,
and counting was carried out in an Intertechnique SL 3000
liquid scintillation spectrometer. All samples counts were
approximately corrected for backg,ro‘md and quenching.

Calculation

The unidirectional blood-to-brain transfer constant (Kj)
was calculated in control and DXN-treated rat brains for
[**C]sucrose and [*H]JAIB from the tissue and plasma radio-
activity data using the equation developed by Ohno et al.

(1978). In brief, the initial rate for blood-to-brain transfer
can be calculated by the following equation, when the passage
of tracer into brain is assumed to be proportional to its plasma
concentration and that the backflux (from brain to blood) is
much smaller than the influx (from blood to brain) during
the experimental period (7):

K= s

J; Cpi - dt

where C,, is the parenchymal brain concentration of the tracer

at the end of experiment (dpm g™'), T is the duration of the

experiment (min), and C,, is the arterial plasma concentration
(dpm ml™).

The transfer constant (X;) is dependent on both the product

of P4 and the blood flow (F) (Renkin, 1959; Crone, 1963),

namely,

0]

PA = F-In[]1 — (K/F)} )

With low permeabilities (P4 < F), a condition well satisfied
for sucrose (Ohno et al., 1978) and AIB (Blasberg et al., 1983),
then, from Eq. 2, PA approaches K; (Fenstermacher et al.,
1981) and can be expressed in this measurement in term of
a plasma clearance (ml g™! min™!).

The tissue parenchymal concentration (Cy,) is obtained by
subtracting the (dpm g') value in the final whole blood and
regional blood volume (ml g™") from the total regional brain
concentration. Therefore, EqQ. 1 may be written as

Cbr( T) — VCwb( T)

T
fo Cy- dt

where V is the regional blood volume and C,, is the tracer
concentration in the final whole blood volume.

K = 3

Regional cerebral blood volume

The regional blood volume (V) was determmed in control
animals for the [*H]dextran space, as the value for (dpm g!
of brain/dpm ml™! of whole blood) at the time of death. Rats
were killed 1 min after intravenous injection of [*H]dextran,
when blood samples were collected. Radioactivity was de-
termined in whole blood and brain regions as described above.

Statistical analysis

Student’s ¢ test for two independent groups was used to
compare mears of controls and DXN-treated animals. One-
way analysis variance was used to compare the treatment
groups, followed by Student’s ¢ test when the overall difference
was statistically significant. Significance was taken as p < 0.05.

RESULTS

The K; values calculated by Eq. 3 for [*H]AIB and
[*“C]sucrose in discrete brain regions of control and
DXN-treated animals killed 10 min after intravenous
injection of both radiotracers are shown in Table 1.
The average values of K; in brain regions of control
rats for [’H]JAIB and [*“C]sucrose approximated 2.0
and 0.60 ml g~! min~! X 1073, respectively. K; values
for [’'H]AIB in all brain regions were higher than sim-
ilarly computed values for ['*C]sucrose and showed a
high degree of correlation with the regional perme-
ability pattern of sucrose, except in the hypothalamus.
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TABLE 1. Regional K; values for [PHJAIB and [*CJsucrose in control and DXN-treated rats

K (ml g™ min™! X 10%)

[*H]AIB ['*C]Sucrose
Brain region Control Single injection 3-day treatment Control Single injection 3-day treatment

Olfactory bulb 3.16 +0.13 2,72 £ 0.12¢ 1.91 + 0.06%* 1.08 + 0.08 1.01 +0.08 0.57 + 0.02%¢
Caudate nucleus 1.17 = 0.06 0.83 + 0.06" 0.64 + 0.03%® 0.46 + 0.03 041 +0.03 0.29 + 0.01%®
Hippocampus 1.74 £ 0.08 1.22 + 0.07¢ 1.02 + 0.07¢ 0.44 + 0.03 0.37 £ 0.05 0.28 = 0.02°
Frontal lobe 2.51 +0.16 1.46 + 0.05° 1.40 + 0.10° 0.65 + 0.06 0.42 + 0.04¢ 0.28 + 0.012*
Occipital lobe 213 £0.25 1.89 + 0.10° 1.32 + 0.05%° 0.55 + 0.05 0.50 = 0.04 0.29 + 0.03%®
Thalamus 1.68 £ 0.10 1.07 + 0.07¢ 1.01 + 0.09° 0.57 £ 0.05 0.52 + 0.04 0.27 £ 0.01%®
Hypothalamus 4.17 £ 0.31 2.66 + 0.18¢ 2.10 £ 0.13¢ 0.58 + 0.04 .0.55 + 0.04 0.28 + 0.01*
Superior colliculus 201 +0.14 1.73 £ 0.19 1.03 + 0.05%* 0.71 £ 0.05 0.63+0.11 0.40 + 0.03°
Inferior colliculus 248 +£0.18 1.91 + 0.16° 1.11 + 0.06%* 0.72 + 0.04 0.54 +0.11¢ 0.52 + 0.03¢
Cerebellum 2.00 +0.22 1.97 £ 0.10 1.23 + 0.17% 0.43 = 0.02 0.40 + 0.01 0.27 + 0.01%?
Pons 2.52 +£0.22 1.32 + 0.66° 1.32 + 0.08° 0.59 + 0.05 0.61 +0.04 0.30 + 0.01%*
Medulla 2.66 +£0.14 202 +0.12¢ 1.60 + 0.10% 0.67 + 0.05 0.64 + 0.01 0.37 £ 0.03**
Midbrain 1.67 £ 0.10 1.44 + 0.13 0.98 + 0.04%® 0.55 £ 0.03 0.52 £ 0.04 0.29 + 0.01%®
Gray matter 2.15 +£0.20 1.85+0.12 1.60 + 0.06%* 0.58 £ 0.02 0.49 + 0.04¢ 0.28 + 0.02¢*
White matter

(corpus callosum) 1.57 £ 0.10 1.30 £ 0.10 1.32 £ 0.10 0.48 + 0.02 0.40 + 0.05¢ 0.37 £ 0.02¢

Data are mean + SE values (n = 6-10). The K; was calculated by Eq. 1 when the animals were killed 10 min after intravenous injection of

DXN.

7 Significant difference (p < 0.05) between control and DXN-treated animals.
5 Significant difference (p < 0.05) between animals given a single injection and 3 days of DXN treatment.

The K; for [*H]JAIB, but not for ['*C]sucrose, in the
hypothalamus was markedly higher than in all the other
brain regions. A lower transfer constant for both
[*H]AIB and ['“C]sucrose was found in caudate nu-
cleus, hippocampus, and white matter.

A significant decrease in Kj, by 30-50%, for both
[*H]JAIB and ['*C]sucrose was observed in almost all
brain regions studied in rats pretreated for 3 days with
DXN (Table 1); the K; for both radiotracers in many
brain regions was also reduced by ~20% in rats injected
intraperitoneally with 2 mg kg~', 3 h before decapi-
tation. The effect of a single injection of DXN was not
significant in the hypothalamus, medulla, pons, and
cerebellum. The cortex and thalamus were the areas
most sensitive to the stabilizing effect of DXN. Figure
1 illustrates changes in K; values for [’H]AIB and
['*C)sucrose after DXN treatment in a representative
brain region (frontal lobe).

DISCUSSION

Although the protective effect of DXN on altered
BBB permeability has been extensively explored in
various experimental models, the effectiveness of the
drug on normal cerebrovascular endothelium is still a
matter of conjecture. The present study clearly dem-
onstrated that administration of DXN for 3 days or
acute treatment with 2 mg kg™’ i.p. before’killing leads
to a reduction in normal cerebrovascular endothelium
permeability for AIB and sucrose. This finding is con-
sistent with the demonstration that acute or continuous
DXN administration produces a significant decrease
in the PA value for water in the cerebral cortex (Reid
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et al., 1983a,b). Our findings are also in accord with a
previous study demonstrating that adrenalectomy pro-
duced a significant increase in BBB permeability to
125]_labeled bovine serum albumin, with the magnitude
of the increase ranging from 25 to 49% in discrete brain
regions (Long and Holoday, 1985).

Furthermore, our results also showed that there is a
high degree of correlation between the regional PA pat-
terns of a nonelectrolyte (sucrose) and those of a small
neutral amino acid (AIB). Both these test substances
cross through the endothelial cells quite slowly and sat-
isfy the conditions for measuring barrier permeability
when expressed in terms of unidirectional transfer (X)

R controL
SINGLE INJECTION

K [ 3 DAYS TREATMENT

CH) AIB €4C) SUCROSE

FIG. 1. Regional K; values (in ml g~ min~" X 10% in a representative
brain region (frontal lobe) for [*H)AIB and ['*C]sucrose in rats pre-
treated with DXN for 3 days.




EFFECT OF DEXAMETHASONE ON BLOOD-BRAIN BARRIER 1341

or PA (Ohno et al., 1978; Fenstermacher et al., 1981,
Blasberg et al., 1983).

The regional K; values for AIB in various brain re-
gions of control animals are consistent with those found
by Blasberg et al. (1983, 1984) and Ellison et al. (1986).
The results for sucrose (both K; and PA determinations)
showed that K; values as estimated by Eq. 3 are com-

_parable with P4 values and are also in agreement with
cerebrovascular permeability measurements deter-
mined by the same equation in other experiments (Ra-
poport et al., 1980; Ziylan et al., 1983, 19845).

Topographically, the effect of DXN on PA values
for sucrose and AIB was regionally variable, as was
shown briefly by Reid et al. (1983a,b) for water per-
meability. This result underscores the functional variety
of different brain regions and may reflect variation in
the local density of steroid receptors in the brain. It is
in accord with studies demonstrating that the receptor
system for glucocorticoids has a distinct neuroanatom-
ical localization (McEwen, 1977; De Kloet, 1984).

The site and the mechanism of action of DXN on
BBB permeability are not clearly established. DXN has
multiple mechanisms of action, and the mode of this
action on endothelial cell permeability in the normal
brain and under pathological conditions may also dif-
fer. It participates in the pituitary-adrenal axis, which
may regulate permeability of the BBB, either by a direct
action or by a feedback influence on adrenocorticotro-
phic hormone (ACTH) (Long and Holoday, 1985); in
the brain, DXN may modify aminergic or peptidergic
system permeability (Ahmed et al., 1967; Raichle et
al., 1975; Westergaard, 1975; McEwen, 1977; Rastogi
and Singhal, 1978) or interact with other circulating
substances, which then take part in the regulation of
cerebrovascular permeability.

Alternatively, DXN may directly or indirectly par-
ticipate in the cellular protein synthesis of vascular en-
dothelium (Tosaki et al., 1985), which has been shown
in nonneural tissues (Hirata et al., 1980).

The finding by Hedley-Whyte and Hsu (1986) that
DXN treatment reduces the normal permeability of
cerebral blood vessels to horseradish peroxidase by de-
creasing the number of horseradish peroxidase-con-
taining small endothelial vesicles also suggests that
DXN may have a direct effect on the vesicular trans-
port.

Furthermore, the binding of labeled DXN primarily
to the endothelial cells around the blood vessels (De
Kloet, 1984), the finding by Rudman and Kutner
(1978) that suppression of ACTH secretion or inter-
cisternal administration of ACTH increases the pen-
etration of labeled albumin, sucrose, insulin, or man-
nitol from blood into brain aq,d CSF, and the relative
effectiveness of intravenous ACTH on albumin pen-
etration into brain suggest that glucocorticoids are more
likely to affect the BBB through a direct action at the
level of the vascular endothelium.

This reducing effect of glucocorticoids on cerebro-
vascular permeability, supported by the findings of

Neuwelt et al. (1982), may also cause decreased drug
delivery to the brain. Because DXN reduces the entry
of macromolecules and diffusion-limited drugs, the
therapeutic effect of adrenal cortical steroids, when ste-
roids and other chemotherapeutic agents are combined
in the treatment of CNS diseases, must be reevaluated.
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