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Abstract: The content of polyunsaturated fatty acids, the
activities of superoxide dismutase (SOD), glutathione per-
oxidase, glutathione reductase, and catalase, and the con-
centration of reduced glutathione were measured in cerebral
microvessels isolated from rat brain. Polyunsaturated fatty
acids, mainly arachidonic, linoleic, and docosahexaenoic
acids, accounted for 32% of total fatty acids in cerebral mi-
crovessels. Whereas total SOD activity in the microvessels
was slightly lower than that found in cerebrum and cerebel-
lum, glutathione peroxidase and glutathione reductase ac-
tivities were twice as high and catalase activity was four
times higher. Glutathione peroxidase in microvessels is ac-
tive on both hydrogen peroxide and cumen hydroperoxide,

and it is strongly inhibited by mercaptosuccinate. After sev-
eral hours of preparation, the concentration of reduced glu-
tathione in isolated microvessels was 0.7 umol/mg of pro-
tein, which corresponds to a concentration of ~3.5 mM.
Our results indicate that the blood-brain barrier contains
large amounts of peroxide-detoxifying enzymes, which may
act, in vivo, to protect its highly polyunsaturated mem-
branes against oxidative alterations. Key Words: Blood-
brain barrier—Polyunsaturated fatty acids—Peroxides—
Glutathione peroxidase—Superoxide dismutase—Cata-
lase. Tayarani L. et al. Enzymatic protection against peroxi-
dative damage in isolated brain capillaries. J. Neurochem.
48,1399-1402 (1987).

The blood-brain barrier (BBB), which is composed
of capillary endothelial cells, restricts and regulates
the movement of ions and substrates between the
plasma and the CNS. Although the oxygen demand
is especially high in the brain (Rapoport, 1976), the
uncontrolled activation of oxygen leads to lipid perox-
idation and tissue damage (Tappel, 1973). Under nor-
mal conditions, part of the oxygen that is metabolized
in the mitochondria undergoes univalent reduction,
leading to superoxide and hydrogen peroxide forma-
tion (Forman and Boveris, 1982; McCord, 1983). An-
other source of oxygen free radicals is the ischemic ac-
tivation of xanthine dehydrogenase to xanthine oxi-
dase, which, upon postischemic reperfusion, catalyzes
the conversion of hypoxanthine to xanthine and then
to uric acid with stoichiometric generation of super-
oxide. The resulting burst in superoxide production
leads to necrosis in many peripheral tissues (McCord,
1985). Although the brain exhibits little xanthine de-
hydrogenase/oxidase activity, the. presence of xan-
thine oxidase in brain microvessels‘(Betz, 1985) sug-

gests that superoxide may cause peroxidative damage
to the BBB.

Peroxidation of polyunsaturated fatty acids is
known to alter membrane fluidity (Dobretsov et al.,
1977), enzyme activities (Esterbauer, 1985), and
transmembrane ion fluxes (Augustin et al., 1979).
Chan et al. (1984) have demonstrated that free radi-
cals affect the permeability of the BBB to sodium and
potassium and induce the release of free fatty acids.
That Na*,K*-ATPase from cerebral microvessels is
strongly affected by high concentrations of either su-
peroxide (Lo and Betz, 1986) or lipid peroxides
(Koide et al., 1986) further supports the hypothesis
that free radicals induce alterations in the permeabil-
ity to sodium and potassium.

Various protective enzymes help to maintain low
steady-state concentrations of oxidizing species in the
cell (Rotilio and Bannister, 1984). As glutathione per-
oxidase, catalase, and superoxide dismutase (SOD)
provide a major detoxication pathway for peroxides
in the brain (Brannan et al., 1980; Mavelliet al., 1982;
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Ono and Okada, 1984), we measured the activities of
these enzymes in isolated rat brain microvessels and
compared them with activities in cerebrum and cere-
bellum.

MATERIALS AND METHODS

Adult male Sprague-Dawley rats weighing 300-350 g and
kept under diurnal light conditions were used in these ex-
periments. Rat chow from U.A.R. (France) and water were
available ad libitum. The animals were anesthetized by di-
ethylether inhalation. The left heart was perfused with 50
ml of ice-cold physiological saline containing 7% heparin.
The brain was quickly removed, and all subsequent steps
were carried out at 4°C. Cortical shells, free of choroid
plexus and of any visible superficial blood vessels or epen-
dyma, were placed in a buffered aqueous solution contain-
ing 135 mM NaCl, 4 mM KCl, 3.2 mM CaCl,, 1.2 mM
MgCl,, 15 mM N-2-hydroxyethylpiperazine-N'-2-ethane-
sulfonic acid (HEPES), 5 mM glucose, and 1% bovine se-
rum albumin, pH 7.4 (prep buffer).

Brain capillaries were isolated according to the method of
Goldstein et al. (1975) with a minor modification. In brief,
a4:1 (wt/vol) homogenate of cortical shells was made at 400
rpm and pelleted by centrifugation at 1,000 g for 10 min
from an ~10% (wt/vol) suspension. The pellet was resus-
pended (12:1 wt/vol) in prep buffer, free of bovine serum
albumin and containing 17.5% dextran (MW, 70,000), and
then centrifuged at 4,000 g for 10 min. Pellets were resus-
pended in prep buffer and gently teased through a nylon
mesh with 118-um pores. The filtrate was passed through
glass bead (diameter, 0.25 mm) columns (1 X 1 cm) and
rinsed with an excess volume of prep buffer. The glass beads
were then placed in a large volume of prep buffer, and the
floating capillary segments were collected by centrifugation
at 1,000 g for 5 min. Capillary pellets were then resuspended
and washed twice, in 50 ml of a 0.9% NaCl solution, by cen-
trifugation at 1,000 g for 5 min. The final capillary pellet
was resuspended in 1-2 ml of 50 mAf Tris-HCI buffer, pH
7.6, containing 0.1 mM EDTA and 0.1% Lubrol (incuba-
tion buffer). The suspension was then sonicated for 30 s,
followed by freezing, thawing, and resonication. The result-
ing homogenate was centrifuged at 3,000 g for 10 min. The
supernatant was removed and used for measurements of en-
Zyme activities. Aliquots were taken for protein content de-
termination using the Biorad dye-binding assay. The pellet
was used for extraction of total lipids (Radin, 1981), acidic
transmethylation of total fatty acids (Luddy et al., 1959),
and analysis of the resulting methyl esters by gas chromatog-
raphy, using a 25-m-long fused silica column impregnated
with Carbowax 20 M. Hepatadecanoic acid was used as an
internal standard.

Homogenates of total cerebral cortex and cerebellum in
incubation buffer were made during microvessel prepara-
tion, and treated in the same fashion as microvessel samples
for all measurements.

The reduced glutathione content in a supernatant ob-
tained from microvessel homogenatgs in 5% sulfosalicylic
acid was determined by C18 reverse-phase HPLC of the
monobromobimane adduct with fluorimetric detection, as
described by Anderson (1985), with cysteine used as the ex-
ternal standard.

Enzyme activity measurements
Glutathione peroxidase activity was measured by a modi-
fication of the method of Paglia and Valentine (1967): Mea-
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surements were done at pH 7.6 and 37°C and in the presence
of 0.5 mAM GSH. The assay mixture in incubation buffer
consisted of 0.12 mM NADPH, 0.5 mM GSH, I unit/ml of
glutathione reductase, and 0.2 mM of either cumene hydro-
peroxide or hydrogen peroxide (initial concentrations).
NADPH disappearance was monitored at a wavelength of
340 nm.

Glutathione reductase activity was measured in incuba-
tion buffer at pH 7.4 and 37°C by monitoring NADPH dis-
appearance at 0.2 mAM glutathione disulfide and 0.12 mAM
NADPH (initial concentrations).

Catalase activity was measured at 37°C in incubation
buffer at pH 7.4 using 10 mAM hydrogen peroxide (initial
concentration) as substrate (Aebi, 1984). The consumption
of H,0, was recorded at an absorption wavelength of
240 nm.

SOD activity was measured at 25°C in 50 mA phosphate
buffer, pH 7.8, containing 0.1 mAM EDTA. The reaction
mixture consisted of 0.01 mAf ferricytochrome C, 0.05 mA/
xanthine, and the amount of xanthine oxidase needed to
reduce ferricytochrome C at a rate of 0.025 absorbance unit/
min at 550 nm as described by Flohé and Otting (1984).
SOD activity was expressed in terms of units/mg of protein,
where 1 unit is defined as that amount of enzyme that inhib-
its the rate of cytochrome C reduction by 50% under the
above conditions. Corrections for nonenzymatic activities
were made in all measurements.

RESULTS

The fatty acid composition of total lipids extracted
from rat brain microvessels is shown in Table 1. Ara-
chidonate, docosahexaenoate, and linoleate were the
major polyunsaturated fatty acids. Polyunsaturated,
monounsaturated, and saturated fatty acids ac-
counted, respectively, for 32, 24, and 44% of total
fatty acids in brain microvessels.

Glutathione peroxidase, glutathione reductase,
SOD, and catalase activities were found in isolated
microvessels. The activities of these enzymes, with the
exception of SOD, were significantly higher in mi-

TABLE 1. Fatty acid composition of total lipids extracted
Jfrom rat brain capillaries

Fatty acid % of total fatty acids
16:0 14.8+0.6
18:0 248+ 1.2
18:1 n-7 44306
18:1 n-9 16.3+£1.9
18:2n-6 6.6+ 1.6
20:0 2.3+0.7
20:1 n-9 1.4+0.5
20:4 n-6 155+ 1.3
22:0 23+04
22:4 n-6 1.1+0.5
22:5n-6 1.5+04
22:6 n-3 7.2+£0.9
24:1 1.8+0.8

Results are the averages + SD of five different determinations.
Fatty acids were determined as the corresponding methyl esters by
fused silica-capillary gas chromatography as described in Materials
and Methods.
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crovessels than in total homogenates of either cere-
brum or cerebellum (Table 2). This also appears to be
a characteristic of endothelial cells of cavernous bod-
ies, which, in addition, have a considerable capacity
for producing NADPH for the regeneration of GSH
(Dobrina and Rossi, 1983). An efficient system of hy-
drogen peroxide degradation may thus be a general
feature of endothelial cells in most vessels. Our
method of SOD assay did not distinguish between Cu/
Zn-SOD and Mn-SOD. As the glutathione peroxidase
activity measured with hydrogen peroxide was
roughly equivalent to that measured with cumene hy-
droperoxide, glutathione activity in cerebral mi-
crovessels may be due essentially to the selenium-de-
pendent enzyme. This conclusion is reinforced by the
complete inhibition observed at 0.1 mAf with the sele-
nium-specific inhibitor mercaptosuccinate for either
substrate (Chaudiére et al., 1984). The activities of
glutathione peroxidase and glutathione reductase in
microvessels were approximately twice those ob-
served in cerebrum and cerebellum homogenates,
whereas catalase activity was four times higher in cere-
bral capillaries than in the brain. By contrast, the ac-
tivity of SOD in brain microvessels was slightly lower
than in the cerebrum or cerebellum samples. The glu-
tathione concentration in isolated cerebral microves-
sels was 0.71 = 0.15 umol/mg of capillary protein,
equivalent to a concentration of ~3.5 mM based on
a 20% protein content. Our current figure for the glu-
tathione concentration in total brain homogenate is
generally close to 2.5 mM (data not shown). Hence,
the glutathione concentration, after several hours of
preparation, remained higher in isolated brain capil-
laries than in the brain.

DISCUSSION

Our results demonstrate that the activities of gluta-
thione peroxidase, glutathione reductase, and catalase
are higher in brain microvessels than in either cere-
brum or cerebellum, whereas total SOD activities are

similar in the three tissues. It should be noted that the
brain homogenates were not myelin free. Thus, the
ratio of glutathione peroxidase to SOD activity is
higher in microvessels than in the cerebrum or the cer-
ebellum homogenates. Such high enzymatic activities
found in cerebral microvessels suggest that endothe-
lial cells require as much, if not more, protection
against peroxidative damage than do other brain cells.
An important consequence of our results is that an
adequate amount of selenium in the diet is required
to protect brain capillaries. The high content of highly
oxidizable polyunsaturated fatty acids in brain capil-
laries, especially 20:4 and 22:6, suggests that lipid per-
oxidation is easily initiated in this tissue. It should also
be noted that the linoleic acid content of brain mi-
crovessels found in our experiments is twice that re-
ported in neurons and oligodendrocytes and 13 and
22 times higher than in synaptosomes and myelin, re-
spectively (Bourre et al., 1984).

SOD and glutathione peroxidase are essential for
cellular defense against peroxidative damage (Wen-
del, 1980; Rotilio and Bannister, 1984). Yusa et al.
(1984) reported that increased brain SOD and catalase
activities protect the CNS against oxygen-induced al-
terations. SOD, catalase, and glutathione peroxidase
constitute a group of mutually supportive enzymes.
Glutathione peroxidase protects Cu/Zn-SOD against
inactivation by hydrogen peroxide (Sinet and Garber,
1981; Blech and Borders, 1983). Under physiological
conditions, catalase is located almost exclusively in
peroxisomes (Gaunt and De Duve, 1976); therefore,
hydrogen peroxide produced by the dismutation of
superoxide is degraded by glutathione peroxidase.
Whether catalase can afford an adequate protection at
high concentrations of hydrogen peroxide remains to
be demonstrated. Whereas SOD and catalase do not
require coenzymes, glutathione peroxidase utilizes
glutathione to reduce hydrogen peroxide to water and
organic hydroperoxides to nontoxic alcohols. As the
concentration of reduced glutathione within the cell

TABLE 2. Comparison of specific activities in homogenates of
rat cerebrum, cerebellum, and brain microvessels

Enzyme
Glutathione Glutathione
Tissue peroxidase® reductase® Catalase® SOD4
Microvessels 47.6+5.3 484+1.3 48+0.3 48.0+ 5.0
Cerebrum 240+09 25.0%+29 1.3+0.1 586+ 1.6
Cerebellum 240108 23.7+22 1.6 0.2 57.7+08

Results are the averages + SD of four different determinations.
4 In nmol of hydrogen peroxide reduced/mg of protein/min; at 0.5 mA GSH, pH 7.6,

and 37°C.

¢ In nmol of NADPH oxidized/mg of protein/min; at 0.2 mM glutathione disulfide,

pH 7.6, and 37°C.

“In pmol of hydrogen peroxide consumed/mg of protein/min; at 10 mM hydrogen

peroxide, pH 7.4, and 37°C.

“In units/mg of protein, as described in Materials and Methods.
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decreases, hydroperoxides can no longer be reduced
by glutathione peroxidase (Smith et al., 1983). The
observation of substantial amounts of GSH in cere-
bral microvessels after several hours of preparation
suggests that glutathione is efficiently regenerated.

The fatty acid profile in this study is in agreement
with previously reported results (Selivonchick and
Roots, 1977; Matheson et al., 1980; Brown et al.,
1984). If the polyunsaturated fatty acids of brain mi-
crovessels contribute to the high selectivity of the
BBB, then they would help to protect the CNS against
the toxic effects of peripheral molecules, but at the
same time, they would enhance the susceptibility of
the BBB to lipid peroxidation.

Our results suggest that peroxide-detoxifying en-
zymes in cerebral microvessels play an important role
in protecting the functional integrity of the BBB,
which in turn protects that of the brain.
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